The Effect of Finite Element Models in Thermal Analysis of Electronic Packages

2009 ◽  
Vol 33 (4) ◽  
pp. 380-387 ◽  
Author(s):  
Nam-Jin Choi ◽  
Jin-Won Joo
2018 ◽  
Vol 38 ◽  
pp. 04026
Author(s):  
Chuan Kai Jiang ◽  
Lei Nie ◽  
Wen Jia ◽  
Yu Ning Zhong

In order to uncover the external manifestations of TSV internal defects, the finite element models of typical internal defects, which were filling missing, axial cavity and end cavity, were established. The thermal analysis was carried out using thermoelectric coupling method. The temperature distribution of TSV with and without defects were obtained. And the temperature variation profiles on the defined paths of TSV layer were also analyzed. The analysis indicated that all the defective TSV showed distinct temperature distribution with the defect-free TSV. Among three typical defects, TSV with filling missing showed the most obvious difference on the temperature distribution and path variation. TSV with end cavity has relatively weak affect and the slightest defect was TSV with axial cavity. Therefore, it could be seen that the external temperature difference caused by the internal defects of TSV could provide effective information for the identification and detection in TSV with internal defects.


2012 ◽  
Vol 531 ◽  
pp. 244-247
Author(s):  
Xiang Shan Huang ◽  
Li Dan Chen

By fluid analysis for the finite element models of "S"-shaped and straight waterways with ANSYS, through thermal analysis for the finite element models of the function blocks with and without holes cooling after flow analysis, by comparison of the temperature field, function blocks with hole deformation is narrowed, the product quality can thus be improved.


1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


1997 ◽  
Author(s):  
Francois Hemez ◽  
Emmanuel Pagnacco ◽  
Francois Hemez ◽  
Emmanuel Pagnacco

2021 ◽  
pp. 107754632199759
Author(s):  
Jianchun Yao ◽  
Mohammad Fard ◽  
John L Davy ◽  
Kazuhito Kato

Industry is moving towards more data-oriented design and analyses to solve complex analytical problems. Solving complex and large finite element models is still challenging and requires high computational time and resources. Here, a modular method is presented to predict the transmission of vehicle body vibration to the occupants’ body by combining the numerical transfer matrices of the subsystems. The transfer matrices of the subsystems are presented in the form of data which is sourced from either physical tests or finite element models. The structural dynamics of the vehicle body is represented using a transfer matrix at each of the seat mounting points in three triaxial (X–Y–Z) orientations. The proposed method provides an accurate estimation of the transmission of the vehicle body vibration to the seat frame and the seated occupant. This method allows the combination of conventional finite element analytical model data and the experimental data of subsystems to accurately predict the dynamic performance of the complex structure. The numerical transfer matrices can also be the subject of machine learning for various applications such as for the prediction of the vibration discomfort of the occupant with different seat and foam designs and with different physical characteristics of the occupant body.


Sign in / Sign up

Export Citation Format

Share Document