scholarly journals Height Measurement by Refractive Index Difference and Digital Holography

2009 ◽  
Vol 20 (2) ◽  
pp. 81-86
Author(s):  
Hyung-Jun Cho ◽  
Doo-Cheol Kim ◽  
Young-Hun Yu ◽  
Sang-Hoon Shin ◽  
Hyuk-Soo Lee
2020 ◽  
Vol 59 (SO) ◽  
pp. SOOE03
Author(s):  
Hiroyuki Ishigaki ◽  
Takahiro Mamiya ◽  
Yoshio Hayasaki

2007 ◽  
Vol 56 (10) ◽  
pp. 5890
Author(s):  
Wang Feng ◽  
Liu De-Sen ◽  
Jiang Xiao-Ping ◽  
Zhou Su-Mei

2016 ◽  
Vol 140 ◽  
pp. 77-84 ◽  
Author(s):  
Jing Zhang ◽  
Zhifang Wu ◽  
Tianye Huang ◽  
Xuguang Shao ◽  
Ping Shum

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Haythem Bany Salameh ◽  
Hazem Khrais

AbstractIn this paper, we develop a novel demultiplexer design for Coarse Wavelength Division Multiplexer (CWDM). The device consists of multi-layer inhomogeneous semi-conductor material, where the refractive index of each layer is graded according to a predefined profile. The proposed design exploits the ray’s spatial shift that results from the material dispersion as different wavelengths propagate through the different layers of the device. Our design forces the multiplexed light to refract after propagation for short distance within the device leading to smaller device size while providing the needed spatial shift between the ray’s of the adjacent multiplexed wavelengths. The proposed structure can be easily implemented using the well-established technology utilized in fabricating existing graded-index fibers. The impacts of the various design parameters (such as the incident angle, number of layers, the layer thickness, the spacing between adjacent wavelengths, the refractive index difference) on the amount of achieved spatial shift between the adjacent wavelengths and the size of the device are investigated. Compared to previous proposed techniques, our device can be easily fabricated to provide higher spatial shift while reducing the device size with by controlling the different design parameters.


2013 ◽  
Vol 827 ◽  
pp. 49-53 ◽  
Author(s):  
Qi Wang ◽  
Hai Na Mo ◽  
Zi Qiao Lou ◽  
Ke Meng Yang ◽  
Yue Sun ◽  
...  

We have designed lateral contact thin film silicon-based solar cells with and without one-dimensional photonic crystals as back surface field layer. The photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light. Simulations demonstrate that energy conversion efficiency and short circuit current ISCfor c-Si solar cells with the photonic crystal structure are increased to 21.11% and 27.0 mA, respectively, from 18.33% and 22.8mA of the one without photonic crystal. In addition, the effects of DBRs consisting of different materials are investigated in our simulations. When the refractive index difference between sub-layers of the DBR is larger, the forbidden band width is broader, the reflectance of the DBR is higher, and more photons are reflected and trapped into the active region, then the absorption efficiency and the energy conversion efficiency of the solar cell are both increased. The bigger the refractive index difference of the DBRs sub-layers is, the broader the forbidden band width is. In addition, a-Si solar cells with and without DBR are also discussed.


Sign in / Sign up

Export Citation Format

Share Document