Ionic Liquids as Green Solvents for the Treatment of Endocrine Disrupting Compounds Using Liquid Membranes

2016 ◽  
Vol 5 (6) ◽  
pp. 258-270
Author(s):  
Santhi Raju Pilli ◽  
Tamal Banerjee ◽  
Kaustubha Mohanty

Presence of endocrine disruptors in water and wastewater pose a serious threat to all living organisms. The removal of such disruptors is a major challenge especially most of the time they are present in trace amounts. Several technologies were tested to see if 100% removal can be achieved. Most of the existing technologies failed to achieve the target and have their own limitations. Membrane technology and especially liquid membrane technology has of late generated extreme interest among the researchers working with pollutants in trace amounts. In this work, experiments on three endocrine disruptors such as BPA, PCP and ES are carried out using supported ionic liquid membranes to see their removal efficiencies. The effects of various process parameters were studied to optimize them.

2014 ◽  
Vol 07 (02) ◽  
pp. 1450012 ◽  
Author(s):  
Xiang Jun Sun ◽  
Ju Jie Luo ◽  
Meng Zhang ◽  
Jin Ping Li

A Carbon dioxide-facilitated transport highway ( CO 2-FTH) on the microporous surface of a membrane matrix was designed using the amino carrier 3-aminopropyltriethoxysilane (APTES). Owing to the reversible reaction between CO 2 molecules and fixed-site carriers, this supported ionic liquid membrane was able to selectively transfer CO 2 more quickly. This concept may inspire means of fabricating a highly permeable and selective membrane to break through Robeson's upper bound.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2437 ◽  
Author(s):  
Francisco Jose Alguacil

Chromium(VI) is a well-known hazardous element, thus, its removal from aqueous sources is of a general concern. Among the technologies used for the removal of this type of toxic elements, liquid membranes are gaining in importance and the same has occurred with the use of ionic liquids, considered for many, due to their properties, as green solvents. Thus, the present work joined the three previous points, presenting an experimental study about the removal of chromium(VI) by the use of a liquid membrane operation which used the commercially available Cyphos IL102 ionic liquid as a carrier. The experimental variables included: the stirring speed applied to the feed and receiving solution (a key-parameter to gain maximum transport), acid, chromium(VI), sodium hydroxide and Cyphos IL102 concentrations in their various phases. Additionally, the performance of the present system was evaluated both against the presence of other metals in solution and other carriers. The experimental results confirmed that Cyphos IL102 is a good carrier for chromium(VI) transport and, thus, its removal from aqueous streams, and it also performed well in the presence of accompanying metals and against the performance of other commercially available carriers.


Author(s):  
Anna M. Comerton ◽  
Robert C. Andrews ◽  
David M. Bagley

The detection of organic micropollutants, such as endocrine-disrupting compounds, pharmaceuticals and personal care products, in wastewater and the aquatic environment has brought increasing concern over their potential adverse ecological and human impacts. These compounds are generally present at trace levels (ng l −1 ) and in complex water matrices, such as wastewaters and surface waters, making their analysis difficult. Currently, no standardized analytical methods are available for the analysis of organic micropollutants in environmental waters. Owing to the diversity of physico-chemical properties exhibited by the various classes of organic micropollutants, the majority of established analytical methods described in the literature focus on a specific class of compounds, with few methods applicable to multi-class compound analysis. As such, analytical challenges and limitations contribute to the lack of understanding of the effectiveness of drinking water and wastewater treatment processes to remove organic micropollutants. This paper provides a practical overview of current analytical methods that have been developed for the analysis of multiple classes of organic micropollutants from various water matrices and describes the challenges and limitations associated with the development of these methods.


2014 ◽  
Vol 893 ◽  
pp. 500-503 ◽  
Author(s):  
Elnaz Halakoo ◽  
Javid Adabi ◽  
Sara Aalinezhad ◽  
Alireza Layeghi Moghaddam ◽  
Alireza Rahimi

To date, membrane technology is of great concern while conventional processes are not able to fulfill prosperous separation. The presence of EDCs in the environment indicates that conventional treatment plants (CTPs) may have limited capability to remove these compounds. Membrane process such as membrane bioreactors (MBRs), nanofiltration (NF) and reverse osmosis (RO) can produce high quality effluents suitable for reuse applications. Membrane bioreactor (MBR) technology is a promising method for water and wastewater treatment because of its ability to produce high-quality effluent that meets water quality regulations. This paper aimed to provide a review of recent research on feasibility of membrane technology such as MBR, NF and RO and also their application to remove EDCs and PhACs from aqueous solution which are highly harmful and toxic. The major factors which exert influence on the separation of these organic micropollutants have been also studied.


Sign in / Sign up

Export Citation Format

Share Document