scholarly journals The Impact of Radio Propagation Models on Ad Hoc Networks Performances

2012 ◽  
Vol 8 (5) ◽  
pp. 752-760 ◽  
Author(s):  
Rhattoy
2021 ◽  
Author(s):  
Altaf Hussain ◽  
Muhammad Rafiq Khan

Abstract Mobile Ad-hoc Network (MANET) is the most emerging and fast expanding technology since the last two decades. One of the major issue and challenging area in MANET is the process of routing due to dynamic topologies and high mobility of mobile nodes. The exchange of information from source to a destination is known as the process of routing. Spectacular amount of attention has been paid by researchers to reliable routing in ad-hoc networks. Efficiency and accuracy of a protocol depends on many parameters in these networks. In addition to other parameters node velocity and propagation models are among them. Calculating signal strength at receiver is the responsibility of a propagation model while mobility of nodes is responsible for topology of the network. A huge amount of loss in performance is occurred due to variation of signal strength at receiver and obstacles between transmissions. Simulation tools are developed to analyze the weakness and strength of protocols along with different parameters that may impact the performance. The choice of a propagation models have an abundant effect on performance on routing protocols in MANET. In this research, it has been analyzed to check the impact of different propagation models on the performance of Optimized Link State Routing (OLSR) in Sparse and Dense scenarios in MANET. The simulation has been carried out in NS-2 by using performance metrics as average Throughput, average packet drop and average latency. The results predicted that propagation models and mobility has a strong impact on the performance of OLSR in considered scenarios.


2015 ◽  
Vol 40 (5) ◽  
pp. 1385-1407 ◽  
Author(s):  
Muhammad Ahsan Qureshi ◽  
Rafidah Md Noor ◽  
Shahaboddin Shamshirband ◽  
Sharmin Parveen ◽  
Muhammad Shiraz ◽  
...  

2014 ◽  
Vol 79 (1) ◽  
pp. 389-403 ◽  
Author(s):  
Ashok M. Kanthe ◽  
Dina Simunic ◽  
Ramjee Prasad

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3571 ◽  
Author(s):  
Antonio Guillen-Perez ◽  
Maria-Dolores Cano

The advent of flying ad hoc networks (FANETs) has opened an opportunity to create new added-value services. Even though it is clear that these networks share common features with its predecessors, e.g., with mobile ad hoc networks and with vehicular ad hoc networks, there are several unique characteristics that make FANETs different. These distinctive features impose a series of guidelines to be considered for its successful deployment. Particularly, the use of FANETs for telecommunication services presents demanding challenges in terms of quality of service, energy efficiency, scalability, and adaptability. The proper use of models in research activities will undoubtedly assist to solve those challenges. Therefore, in this paper, we review mobility, positioning, and propagation models proposed for FANETs in the related scientific literature. A common limitation that affects these three topics is the lack of studies evaluating the influence that the unmanned aerial vehicles (UAV) may have in the on-board/embedded communication devices, usually just assuming isotropic or omnidirectional radiation patterns. For this reason, we also investigate in this work the radiation pattern of an 802.11 n/ac (WiFi) device embedded in a UAV working on both the 2.4 and 5 GHz bands. Our findings show that the impact of the UAV is not negligible, representing up to a 10 dB drop for some angles of the communication links.


Author(s):  
Fabián García-Nocetti ◽  
Francisco Javier Ovalle-Martínez ◽  
Julio Solano-González ◽  
Ivan Stojmenović

2010 ◽  
pp. 1595-1613
Author(s):  
Fei Liu ◽  
Geert Heijenk

A very promising approach to discovering services and context information in ad-hoc networks is based on the use of Attenuated Bloom filters. In this paper we analyze the impact of changes in the connectivity of an ad-hoc network on this approach. We evaluate the performance of the discovery protocol while nodes appear, disappear, and move, through analytical and simulative analysis. The analytical results are shown to be accurate when node density is high. We show that an almost linear relation exists between the density of the network and the number of update messages to be exchanged. Further, in case of nodes moving, the number of messages exchanged does not increase with the speed of movement.


Sign in / Sign up

Export Citation Format

Share Document