scholarly journals RETRACTED: Assessment of Position Control of DC Servomotors with PID and Sliding Mode Control Approach

2019 ◽  
Vol 3 (1) ◽  
pp. 52-59
Author(s):  
Santosh Kumar Suman ◽  
Awadhesh Kumar
Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1701-1727 ◽  
Author(s):  
Mohd Ariffanan Mohd Basri

SUMMARYThe quadrotor aerial robot is a complex system and its dynamics involve nonlinearity, uncertainty, and coupling. In this paper, an adaptive backstepping sliding mode control (ABSMC) is presented for stabilizing, tracking, and position control of a quadrotor aerial robot subjected to external disturbances. The developed control structure integrates a backstepping and a sliding mode control approach. A sliding surface is introduced in a Lyapunov function of backstepping design in order to further improve robustness of the system. To attenuate a chattering problem, a saturation function is used to replace a discontinuous sign function. Moreover, to avoid a necessity for knowledge of a bound of external disturbance, an online adaptation law is derived. Particle swarm optimization (PSO) algorithm has been adopted to find parameters of the controller. Simulations using a dynamic model of a six degrees of freedom (DOF) quadrotor aerial robot show the effectiveness of the approach in performing stabilization and position control even in the presence of external disturbances.


Author(s):  
To Xuan Dinh ◽  
Kyoung Kwan Ahn

This article proposed a variable gain fast terminal sliding mode controller with an estimator of the uncertainty model for a piezo positioning stage system. The designed terminal sliding mode control has some advantages over the linear sliding mode control such as fast convergence and chattering reduction while maintains its robustness to the uncertainties. Next, an indirect technique is developed to enable the elimination of the singularity problem corresponding to initial terminal sliding mode control. In addition, a cerebellar model articulation controller is carried out to estimate the nonlinear dynamics of the piezo positioning stage. To deal with unknown bounds of uncertainties and disturbances, the proposed scheme consists of using online tuning control gains that ensure the establishment of a real terminal sliding mode in a finite time. Moreover, a fuzzy logic scheme is presented to smooth out the discontinuity part of the control signal, hence improve the control performance. Stability analysis of closed loop system is provided using the Lyapunov function method. Experiment results are presented to evaluate the effectiveness of the designed control approach.


2018 ◽  
Vol 8 (1) ◽  
pp. 142-153
Author(s):  
Vu Trieu Minh ◽  
Mart Tamre ◽  
Even Sekhri

AbstractThis paper proposes the mathematical modeling and robust control algorithms for linear belt system with the help of sliding mode control approach. Due to the elasticity of the belt, the presence of frictions, and the un-modeled dynamics, conventional controllers cannot provide precise position control of carriage. Dealing with this kind of system, a robust controller is needed and the chattering-free sliding mode control (SMC) approach is used to design the robust controller. A belt stretching estimator is also incorporated into the control law. Simulations show that the system is free from chattering and robust to disturbances. The reference tracking position is performed with the minimal errors to an extent that can be considered negligible. The time for reaching the reference tracking position is very fast. The system is safe for all mechanical and electrical devices.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


Author(s):  
Yohan Díaz-Méndez ◽  
Leandro Diniz de Jesus ◽  
Marcelo Santiago de Sousa ◽  
Sebastião Simões Cunha ◽  
Alexandre Brandão Ramos

Sliding mode control (SMC) is a widely used control law for quadrotor regulation and tracking control problems. The purpose of this article is to solve the tracking problem of quadrotors using a relatively novel nonlinear control law based on SMC that makes use of a conditional integrator. It is demonstrated by a motivation example that the proposed control law can improve the transient response and chattering shortcomings of the previous approaches of similar SMC based controllers. The adopted Newton–Euler model of quadrotor dynamics and controller design is treated separately in two subsystems: attitude and position control loops. The stability of the control technique is demonstrated by Lyapunov’s analysis and the effectiveness and performance of the proposed method are compared with a similar integral law, also based on SMC, and validated by tracking control problems using numerical simulations. Simulations were developed in the presence of external disturbances in order to evaluate the controller robustness. The effectiveness of the proposed controller was verified by performance indexes, demonstrating less accumulated tracking errors and control activity and improvement in the transient response and disturbance rejection when compared to a conventional integrator sliding mode controller.


Sign in / Sign up

Export Citation Format

Share Document