scholarly journals Modeling and robust control algorithms for a linear belt driven system

2018 ◽  
Vol 8 (1) ◽  
pp. 142-153
Author(s):  
Vu Trieu Minh ◽  
Mart Tamre ◽  
Even Sekhri

AbstractThis paper proposes the mathematical modeling and robust control algorithms for linear belt system with the help of sliding mode control approach. Due to the elasticity of the belt, the presence of frictions, and the un-modeled dynamics, conventional controllers cannot provide precise position control of carriage. Dealing with this kind of system, a robust controller is needed and the chattering-free sliding mode control (SMC) approach is used to design the robust controller. A belt stretching estimator is also incorporated into the control law. Simulations show that the system is free from chattering and robust to disturbances. The reference tracking position is performed with the minimal errors to an extent that can be considered negligible. The time for reaching the reference tracking position is very fast. The system is safe for all mechanical and electrical devices.

Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1701-1727 ◽  
Author(s):  
Mohd Ariffanan Mohd Basri

SUMMARYThe quadrotor aerial robot is a complex system and its dynamics involve nonlinearity, uncertainty, and coupling. In this paper, an adaptive backstepping sliding mode control (ABSMC) is presented for stabilizing, tracking, and position control of a quadrotor aerial robot subjected to external disturbances. The developed control structure integrates a backstepping and a sliding mode control approach. A sliding surface is introduced in a Lyapunov function of backstepping design in order to further improve robustness of the system. To attenuate a chattering problem, a saturation function is used to replace a discontinuous sign function. Moreover, to avoid a necessity for knowledge of a bound of external disturbance, an online adaptation law is derived. Particle swarm optimization (PSO) algorithm has been adopted to find parameters of the controller. Simulations using a dynamic model of a six degrees of freedom (DOF) quadrotor aerial robot show the effectiveness of the approach in performing stabilization and position control even in the presence of external disturbances.


Author(s):  
To Xuan Dinh ◽  
Kyoung Kwan Ahn

This article proposed a variable gain fast terminal sliding mode controller with an estimator of the uncertainty model for a piezo positioning stage system. The designed terminal sliding mode control has some advantages over the linear sliding mode control such as fast convergence and chattering reduction while maintains its robustness to the uncertainties. Next, an indirect technique is developed to enable the elimination of the singularity problem corresponding to initial terminal sliding mode control. In addition, a cerebellar model articulation controller is carried out to estimate the nonlinear dynamics of the piezo positioning stage. To deal with unknown bounds of uncertainties and disturbances, the proposed scheme consists of using online tuning control gains that ensure the establishment of a real terminal sliding mode in a finite time. Moreover, a fuzzy logic scheme is presented to smooth out the discontinuity part of the control signal, hence improve the control performance. Stability analysis of closed loop system is provided using the Lyapunov function method. Experiment results are presented to evaluate the effectiveness of the designed control approach.


2014 ◽  
Vol 912-914 ◽  
pp. 727-731
Author(s):  
Tao Zhou ◽  
Xi Feng Liang

In order to improve the control performance of position trajectory tracking of manipulator joint, a sliding mode control (SMC) method based on genetic algorithm(GA) is proposed in this paper. In this method, the performance of SMC algorithm is improved through adjusting the parameters of switching function and exponential approach law by genetic algorithm. The method was applied to accomplish the precise position control of manipulator joint. Simulation experiments show that the response time in manipulator joint control system by the SMC method based on GA is reduced 0.62s than the ordinary SMC algorithm. And the system restore stability time with a load change is also reduced 0.7s. External disturbance has no significant effect on the control system. The chattering of controller output is significantly reduced.


2021 ◽  
Vol 11 (22) ◽  
pp. 10978
Author(s):  
Hyun-Hee Kim ◽  
Min-Cheol Lee ◽  
Hyeon-Jin Cho ◽  
Jun-Ho Hwang ◽  
Jong-Seob Won

In the underwater environment, robust control algorithms are required to control autonomous underwater vehicles (AUVs) at high speed while preventing large nonlinearities and disturbances. Sliding mode control (SMC) is a well-known robust control theory and has been widely used not only in AUV control but also in systems such as industrial robots which have high nonlinearity in their system dynamics. However, SMC has the disadvantage of causing chattering on the control input, and it is difficult to apply this method to the control fins of an AUV system that cannot move its fins at high speed underwater. In this work, a design for a sliding mode control with sliding perturbation observer (SMCSPO) algorithm is applied to AUVs, and the simulation results under underwater disturbance conditions are discussed. From simulation using MATLAB, it is confirmed that AUV control using SMCSPO shows better trajectory tracking control performance without chattering than PID control.


Author(s):  
K B Goh ◽  
M W Dunnigan ◽  
B W Williams

Sliding mode control (SMC) methods possess several advantageous properties such as robustness against parameter variation, disturbance rejection, straightforward design, and are simple to implement. In this paper, a sliding mode control algorithm (which considers the non-linear friction dynamics) based on an equivalent control technique is designed and implemented on a non-linear induction machine system with non-linear friction dynamics such as Coulomb, windage, Stribeck, and static friction. The chattering phenomenon, which is inherent in the standard sliding mode algorithm, is discussed, as well as the techniques to reduce the chattering effect. A sixth-order non-linear induction machine model is employed for simulation analysis. The developed control algorithms are then tested for position control of a practical vector-controlled induction machine, in three different operating conditions (nominal load, high inertial load, and rotor resistance mismatch). The controller performance results are compared practically with several different sliding mode control algorithms as well as with a fixed-gain controller test.


Sign in / Sign up

Export Citation Format

Share Document