scholarly journals NEW RULE FOR CHOICE OF THE REGULARIZATION PARAMETER IN (ITERATED) TIKHONOV METHOD

2009 ◽  
Vol 14 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We propose a new a posteriori rule for choosing the regularization parameter α in (iterated) Tikhonov method for solving linear ill‐posed problems in Hilbert spaces. We assume that data are noisy but noise level δ is given. We prove that (iterated) Tikhonov approximation with proposed choice of α converges to the solution as δ → 0 and has order optimal error estimates. Under certain mild assumption the quasioptimality of proposed rule is also proved. Numerical examples show the advantage of the new rule over the monotone error rule, especially in case of rough δ.

2008 ◽  
Vol 8 (3) ◽  
pp. 237-252 ◽  
Author(s):  
U HAMARIK ◽  
R. PALM ◽  
T. RAUS

AbstractWe consider linear ill-posed problems in Hilbert spaces with a noisy right hand side and a given noise level. To solve non-self-adjoint problems by the (it-erated) Tikhonov method, one effective rule for choosing the regularization parameter is the monotone error rule (Tautenhahn and Hamarik, Inverse Problems, 1999, 15, 1487– 1505). In this paper we consider the solution of self-adjoint problems by the (iterated) Lavrentiev method and propose for parameter choice an analog of the monotone error rule. We prove under certain mild assumptions the quasi-optimality of the proposed rule guaranteeing convergence and order optimal error estimates. Numerical examples show for the proposed rule and its modifications much better performance than for the modified discrepancy principle.


2009 ◽  
Vol 14 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We consider linear ill‐posed problems in Hilbert spaces with noisy right hand side and given noise level. For approximation of the solution the Tikhonov method or the iterated variant of this method may be used. In self‐adjoint problems the Lavrentiev method or its iterated variant are used. For a posteriori choice of the regularization parameter often quasioptimal rules are used which require computing of additionally iterated approximations. In this paper we propose for parameter choice alternative numerical schemes, using instead of additional iterations linear combinations of approximations with different parameters.


2017 ◽  
Vol 22 (3) ◽  
pp. 283-299
Author(s):  
Sergii G. Solodky ◽  
Ganna L. Myleiko ◽  
Evgeniya V. Semenova

In the article the authors developed two efficient algorithms for solving severely ill-posed problems such as Fredholm’s integral equations. The standard Tikhonov method is applied as a regularization. To select a regularization parameter we employ two different a posteriori rules, namely, discrepancy and balancing principles. It is established that proposed strategies not only achieved optimal order of accuracy on the class of problems under consideration, but also they are economical in the sense of used discrete information.


2011 ◽  
Vol 11 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Kosnazar Sharipov

AbstractWe consider the classical ill-posed problem of the recovery of continuous functions from noisy Fourier coefficients. For the classes of functions given in terms of generalized smoothness, we present a priori and a posteriori regularization parameter choice realizing an order-optimal error bound.


2019 ◽  
Vol 27 (2) ◽  
pp. 283-300 ◽  
Author(s):  
Bernd Hofmann ◽  
Stefan Kindermann ◽  
Peter Mathé

Abstract The authors study Tikhonov regularization of linear ill-posed problems with a general convex penalty defined on a Banach space. It is well known that the error analysis requires smoothness assumptions. Here such assumptions are given in form of inequalities involving only the family of noise-free minimizers along the regularization parameter and the (unknown) penalty-minimizing solution. These inequalities control, respectively, the defect of the penalty, or likewise, the defect of the whole Tikhonov functional. The main results provide error bounds for a Bregman distance, which split into two summands: the first smoothness-dependent term does not depend on the noise level, whereas the second term includes the noise level. This resembles the situation of standard quadratic Tikhonov regularization in Hilbert spaces. It is shown that variational inequalities, as these were studied recently, imply the validity of the assumptions made here. Several examples highlight the results in specific applications.


2010 ◽  
Vol 15 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Uno Hämarik ◽  
Reimo Palm ◽  
Toomas Raus

We consider regularization of linear ill‐posed problem Au = f with noisy data fδ, ¦fδ - f¦≤ δ . The approximate solution is computed as the extrapolated Tikhonov approximation, which is a linear combination of n ≥ 2 Tikhonov approximations with different parameters. If the solution u* belongs to R((A*A) n ), then the maximal guaranteed accuracy of Tikhonov approximation is O(δ 2/3) versus accuracy O(δ 2n/(2n+1)) of corresponding extrapolated approximation. We propose several rules for choice of the regularization parameter, some of these are also good in case of moderate over‐ and underestimation of the noise level. Numerical examples are given.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


2004 ◽  
Vol 2004 (37) ◽  
pp. 1973-1996 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

Simplified regularization using finite-dimensional approximations in the setting of Hilbert scales has been considered for obtaining stable approximate solutions to ill-posed operator equations. The derived error estimates using an a priori and a posteriori choice of parameters in relation to the noise level are shown to be of optimal order with respect to certain natural assumptions on the ill posedness of the equation. The results are shown to be applicable to a wide class of spline approximations in the setting of Sobolev scales.


2017 ◽  
Author(s):  
Agah D. Garnadi

Iterative regularization methods for nonlinear ill-posed equations of the form $ F(a)= y$, where $ F: D(F) \subset X \to Y$ is an operator between Hilbert spaces $ X $ and $ Y$, usually involve calculation of the Fr\'{e}chet derivatives of $ F$ at each iterate and at the unknown solution $ a^\sharp$. A modified form of the generalized Gauss-Newton method which requires the Fr\'{e}chet derivative of $F$ only at an initial approximation $ a_0$ of the solution $ a^\sharp$ as studied by Mahale and Nair \cite{MaNa:2k9}. This work studied an {\it a posteriori} stopping rule of Lepskij-type of the method. A numerical experiment from inverse source potential problem is demonstrated.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Santhosh George ◽  
C. D. Sreedeep ◽  
Ioannis K. Argyros

Abstract In this paper, we study secant-type iteration for nonlinear ill-posed equations involving 𝑚-accretive mappings in Banach spaces. We prove that the proposed iterative scheme has a convergence order at least 2.20557 using assumptions only on the first Fréchet derivative of the operator. Further, using a general Hölder-type source condition, we obtain an optimal error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.


Sign in / Sign up

Export Citation Format

Share Document