scholarly journals EXPERIMENTAL STUDY ON INFLUENCE OF STACK EFFECT ON FIRE IN THE COMPARTMENT ADJACENT TO STAIRWELL OF HIGH RISE BUILDING

2014 ◽  
Vol 20 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Wen Xi Shi ◽  
Jie Ji ◽  
Jin Hua Sun ◽  
S. M. Lo ◽  
Lin Jie Li ◽  
...  

In this paper, to study the influence of stack effect on fire in the compartment adjacent to a stairwell, a set of experiments were conducted by varying the pool size, top vent state and bottom vent size in a 1/3 scaled 12-layer-stairwell configuration. The phenomenon of methanol flame tilting in the fire room was observed and studied. Results showed that the flame tilt angle increases with an increase of Ri-1. The temperatures of hot gases in the fire room decrease due to the cooling effect of fresh air induced by stack effect. The mass loss rate of methanol fuel is influenced by fresh air flow sucked into fire room due to stack effect. On the basis of the experimental results, we conclude that the velocity of air flow into fire room is proportional to 1/3 power of the heat release rate in the stairwell.

2014 ◽  
Vol 1004-1005 ◽  
pp. 77-84 ◽  
Author(s):  
Zhen Lu Zhang ◽  
Dong Li Li ◽  
Wen Cai Xu ◽  
Ya Bo Fu ◽  
Rui Juan Liao

This work reports the flammability properties of Nanocomposites reinforced with silica and PTFE nanoparticles and toughened with an elastomeric ethylene-vinyl acetate (EVA). Through trial and simulation study of the flame retardant thermoplastic polymer and melting characteristics of PP in the combustion process.The study found that modified PP composites have good flame retardancy compared to PP in case of fire relatively.In the study,the melting characteristics of the thermoplastic polymer affected the mass loss rate in the combustion stage.Nanocomposites experienced low plastic mass loss compared with PP, this has been related to pyrolysis mechanism of polymer.In general,The polymers undergoing depolymerization will lead to a rapid volatilization and therefore experienced much less melting.The results showed that:total heat release of nanocomposites was higher than polypropylene, while the average heat release rate, the maximum heat release rate, the average effective heat of combustion, the average mass loss rate, the average specific extinction area, and other indicators were lower than polypropylene.


2010 ◽  
Vol 16 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Romualdas Mačiulaitis ◽  
Vladas Praniauskas

The paper analyses three different wood products used for research exposing them to the surface heat flow density of 30 kW/m2, 50 kW/m2 and 70 kW/m2 and applying the test method described in ISO 5660–1 Reaction‐to‐fire tests – Heat release, smoke production and mass loss rate – Part 1: Heat release rate (Cone calorimeter method). Research was performed applying 18 mm and 29 mm thick laminated wood chipboards and 24 mm thick medium density fibreboard. The paper provides an overview of the fire properties of wood products and discusses testing methods and the percentage composition of the tested wood products. Mean time to their ignition was determined. The mean values of the maximum heat release rate and time required to achieve them were investigated. Furthermore, the measurements of the released heat and efficient heat of combustion were taken. Further research covers the performance of statistic analysis, deriving empiric equations, correlation and determination coefficients, standard errors and Student criterion. The results of research are summarized. Conclusions are provided at the end of the paper. Santrauka Straipsnyje nagrinejami trys skirtingi medienos gaminiai, su kuriais atlikti tyrimai veikiant 30 kW/m2, 50 kW/m2bei 70 kW/m2 paviršiniais šilumos srautais taikant ISO 5660–1 “Reaction‐to‐fire tests – Heat release, smoke production and mass loss rate – Part 1: Heat release rate (Cone calorimeter method)” bandymo metoda. Tyrimai atlikti su 18 mm ir 29 mm storio laminuotomis medžio drožliu plokštemis bei 24 mm storio vidutinio tankio plaušo plokšte. Darbe apžvel‐giamos medienos gaminiu gaisrines savybes. Aptariama bandymo metodika ir tirtu medienos gaminiu procentine sudetis. Nustatytas vidutinis laikas iki ju užsidegimo. Ištirti vidutiniai maksimalios šilumos išsiskyrimo greičio ir laiko iki ju pasiekimo dydžiai, taip pat išmatuota visa išskirta šiluma ir efektyvi degimo šiluma. Atlikta statistine analize, gautos em‐pirines lygtys, koreliacijos bei determinacijos koeficientai, standartines paklaidos bei Stjudento kriterijai. Apibendrinami tyrimo rezultatai. Darbo pabaigoje suformuluojamos išvados.


2018 ◽  
Vol 37 (1) ◽  
pp. 18-46 ◽  
Author(s):  
Abhishek Bhargava ◽  
Patrick Van Hees ◽  
Bjarne Husted ◽  
Antonio Rodolfo Junior ◽  
Corina Neumeister

A heat transfer and sub-grid chemical reaction kinetic model for solid phase combustion of a charring polymer is presented based on distributed reactivity modeling approach. The model is used to compute flammability parameters of a polymer sheet of a given thickness to simulate test results of a cone calorimeter experiment. Comparison of model simulations with cone calorimeter test data shows that it gives reasonable prediction of mass loss rate, heat release rate, and total heat released of poly-vinyl chloride (PVC) and ethyl vinyl acetate–aluminum tri-hydroxide (EVA-ATH). The solution of governing equations with the current form of distributed reactivity modeling model poses numerical challenges due to appearance of a double integral in the chemical reaction model. Hence, an analytical approximation has been derived to solve mass and energy conservation equations representing the model. Simulation results indicate that with the approximated form of the distributed reactivity modeling model, along with the input parameters retrieved from literature, the model shows comparatively good predictions for EVA-ATH for mass loss rate, heat release rate, and total heat released, but calculates under-predicted values for PVC.


2003 ◽  
Vol 21 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Jing-Yan Zhang ◽  
Li-Zhong Yang ◽  
Zai-Fu Guo ◽  
Zhi-Hua Deng

Sign in / Sign up

Export Citation Format

Share Document