scholarly journals IDENTIFICATION SYSTEM FOR THE TECHNICAL CONDITION OF GAS TURBINE ENGINES OF AIRCRAFT

Aviation ◽  
2008 ◽  
Vol 12 (4) ◽  
pp. 101-112 ◽  
Author(s):  
Arif Pashayev ◽  
Djakhangir Askerov ◽  
Ramiz Sadiqov ◽  
Parviz Abdullayev

In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of the use of Soft Computing methods‐fuzzy logic and neural networks at these diagnostic stages is considered. Training with high accuracy of fuzzy multiple linear and non‐linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus, for to make a more adequate model of the technical condition of GTE, the dynamics changes of skewness and kurtosis coefficients are analysed. Research of skewness and kurtasis coefficients shows, that the statistical distributions of the work parameters of GTE have a fuzzy character. Hence, consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics of the changes in the dynamics of the work parameters of GTE allows to draw the conclusion that it is necessary to use fuzzy statistical analysis during the preliminary identification of the technical condition of engines. Research of changes in the values of correlation coefficients also demonstrates their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. The fuzzy multiple correlation coefficient of fuzzy multiple regression is considered for checking the adequacy of models. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (hard computing technology is used) on measurements of input and output parameters of the multiple linear and nonlinear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The system that is developed to monitor the condition of GTE provides stage‐by‐stage estimation of the technical condition of an engine. As an application of this technique, an estimation of the new operating aviation engine temperature condition was made. Santrauka Straipsnyje atskleidžiamas tikimybinio-statistinio metodo nepagrįstumas diagnozuojant dujų turbininius variklius, kai informacija yra netiksli, ribota ir neapibrėžta. Parodytas technologijos Soft Computing taikymo efektyvumas. Taikant netikslios statistikos, netikslios logikos ir neuroninių tinklų tikslius metodus dujų turbininių variklių diagnozavimui atliekamas daugiamačių tiesinių ir netiesinių modelių (regresijos lygčių), gautų iš netikslių statistinių duomenų, apmokymas. Taikant aprašytą metodą buvo atlikta pradėto eksploatuoti turbininio variklio šiluminės būsenos analizė.

Author(s):  
P. S. Abdullayev ◽  
A. M. Pashayev ◽  
D. D. Askerov ◽  
R. A. Sadiqov

In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients’ changes. Researches of skewness and kurtosis coefficients values’ changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes’ dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines’ technical condition. Researches of correlation coefficients values’ changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine D-30KU-154 technical condition was made.


Author(s):  
P. S. Abdullayev

In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients’ changes. Researches of skewness and kurtosis coefficients values’ changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes’ dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines’ technical condition. Researches of correlation coefficients values’ changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and nonlinear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.


Author(s):  
P. S. Abdullayev ◽  
A. M. Pashayev ◽  
R. A. Sadiqov ◽  
A. J. Mirzoyev

In this paper is shown the efficiency of the new Soft Computing technology application at different diagnosing stages of aviation gas turbine engine (GTE) technical condition with using Fuzzy Logic and Neural Networks methods, when the flight information has property of a fuzzy, limitation and uncertainty. On the fuzzy statistical data basis and with high accuracy is made the training of Fuzzy Multiple Linear and Non-Linear models (Fuzzy Regression Equations). Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients’ changes. Researches of skewness and kurtosis coefficients values’ changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes’ dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines’ technical condition. Researches of correlation coefficients values’ changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. With a view of completeness of GTE technical condition diagnosing in this paper are considered Fuzzy Thermodynamic Models. As output parameter of these models the outlet gas temperature of gas turbine (turbine exhaust gas temperature -EGT) expediency is considered. In view of limitation of controllable parameters’ structure are used also semiempirical models. The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.


2020 ◽  
pp. 22-29
Author(s):  
A. Bogoyavlenskiy ◽  
A. Bokov

The article contains the results of the metrological examination and research of the accuracy indicators of a method for diagnosing aircraft gas turbine engines of the D30KU/KP family using an ultra-high-frequency plasma complex. The results of metrological examination of a complete set of regulatory documents related to the diagnostic methodology, and an analysis of the state of metrological support are provided as well. During the metrological examination, the traceability of a measuring instrument (diagnostics) – an ultrahigh-frequency plasma complex – is evaluated based on the scintillation analyzer SAM-DT-01–2. To achieve that, local verification schemes from the state primary standards of the corresponding types of measurements were built. The implementation of measures to eliminate inconsistencies identified during metrological examination allows to reduce to an acceptable level the metrological risks of adverse situations when carrying out aviation activities in industry and air transportation. In addition, the probability of occurrence of errors of the first and second kind in the technological processes of tribodiagnostics of aviation gas turbine engines is reduced when implementing a method that has passed metrological examination in real practice. At the same time, the error in determining ratings and wear indicators provides acceptable accuracy indicators and sufficient reliability in assessing the technical condition of friction units of the D-30KP/KP2/KU/KU-154 aircraft engines.


Author(s):  
Д.О. Пушкарёв

Рассматривается применение нейросетевых экспертных систем в области контроля, диагностики и прогнозирования технического состояния авиационных ГТД на основе нечеткой логики. Показана методика для решения таких задач в области технической эксплуатации авиационной техники совместно с использованием фаззи-интерференсной системы программы MATLAB. Используя статистические данные о работе двигателя формируется экспертная система на основе нейронной сети позволяющая осуществлять контроль и диагностику ГТД, а также прогнозировать дальнейшее техническое состояния анализируемого двигателя. The application of neural network expert systems in the field of monitoring, diagnostics and forecasting of the technical condition of aviation gas turbine engines based on fuzzy logic is considered. The technique for solving such problems in the field of technical operation of aircraft and using the fuzzy-interference system of the MATLAB program is shown. Using statistical data on the operation of the engine, an expert system is based on the fundamental of a neural network that provide monitoring and diagnostics of gas turbine engines, as well as predicting the further technical condition of the analyzed engine.


Sign in / Sign up

Export Citation Format

Share Document