Efficiency of Removal of Iron, Manganese, Ammonium and Organic Matter from Groundwater

Author(s):  
Ramunė Albrektienė ◽  
Mindaugas Rimeika

The acceptable concentrations in groundwater are usually in excess of iron, ammonium and manganese. These compounds are inefficiently removed by means of ordinary technologies of ammonium ions, iron and manganese compounds removal from groundwater (water aeration and filtration through granular filter fillings) where groundwater contains high concentrations of organic compounds. Increased concentrations of organic compounds in groundwater occur in well fields where exploited aquifers have contact with surface water wells and are supplemented with water from open water bodies. Such well field is located in the town of Nida (Lithuania). The norms permitted by Council directive 98/83/EC on the quality of water intended for human consumption are exceeded by iron, ammonium, manganese and organic compounds in this well field. The present study examines the efficiency of drinking water treatment technology of three-stage filtration with aeration and insertion of coagulant (polyaluminum chloride) where ammonium ions, iron, manganese and organic compounds are removed from groundwater in an integral manner. Three fillings were used for filtration: quartz sand, zeolite and quartz sand with oxidizing bacteria. The drinking water treatment technology examined removes ammonium ions, iron, manganese and organic compounds from groundwater in an integral manner until the requirements of the norms of directive 98/83/EC are achieved.

2021 ◽  
Vol 07 (02) ◽  
pp. 235-258
Author(s):  
Dalia Hassan Khafagy ◽  
Mohammed Elanwar H. Osman ◽  
Mohamed Ismail El Shahawy ◽  
Saly Farouq Gheda

2021 ◽  
Vol 204 ◽  
pp. 117595
Author(s):  
Sara Glade ◽  
Siva RS Bandaru ◽  
Mohit Nahata ◽  
Jay Majmudar ◽  
Ashok Gadgil

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3275
Author(s):  
Philipp Otter ◽  
Katharina Mette ◽  
Robert Wesch ◽  
Tobias Gerhardt ◽  
Frank-Marc Krüger ◽  
...  

A large variety of Advanced Oxidation Processes (AOPs) to degrade trace organic compounds during water treatment have been studied on a lab scale in the past. This paper presents the combination of inline electrolytic chlorine generation (ECl2) with low pressure UV reactors (UV/ECl2) in order to allow the operation of a chlorine-based AOP without the need for any chlorine dosing. Lab studies showed that from a Free Available Chlorine (FAC) concentration range between 1 and 18 mg/L produced by ECl2 up to 84% can be photolyzed to form, among others, hydroxyl radicals (OH) with an UV energy input of 0.48 kWh/m3. This ratio could be increased to 97% by doubling the UV energy input to 0.96 kWh/m3 and was constant throughout the tested FAC range. Also the achieved radical yield of 64% did not change along the given FAC concentration range and no dependence between pH 6 and pH 8 could be found, largely simplifying the operation of a pilot scale system in drinking water treatment. Whereas with ECl2 alone only 5% of benzotriazoles could be degraded, the combination with UV improved the degradation to 89%. Similar results were achieved for 4-methylbenzotriazole, 5-methylbenzotriazole and iomeprol. Oxipurinol and gabapentin were readily degraded by ECl2 alone. The trihalomethanes values were maintained below the Germany drinking water standard of 50 µg/L, provided residual chlorine concentrations are kept within the permissible limits. The here presented treatment approach is promising for decentralized treatment application but requires further optimization in order to reduce its energy requirements.


2002 ◽  
Vol 68 (7) ◽  
pp. 3293-3299 ◽  
Author(s):  
J. L. Zimmer ◽  
R. M. Slawson

ABSTRACT The increased use of UV radiation as a drinking water treatment technology has instigated studies of the repair potential of microorganisms following treatment. This study challenged the repair potential of an optimally grown nonpathogenic laboratory strain of Escherichia coli after UV radiation from low- and medium-pressure lamps. Samples were irradiated with doses of 5, 8, and 10 mJ/cm2 from a low-pressure lamp and 3, 5, 8, and 10 mJ/cm2 from a medium-pressure UV lamp housed in a bench-scale collimated beam apparatus. Following irradiation, samples were incubated at 37°C under photoreactivating light or in the dark. Sample aliquots were analyzed for up to 4 h following incubation using a standard plate count. Results of this study showed that E. coli underwent photorepair following exposure to the low-pressure UV source, but no repair was detectable following exposure to the medium-pressure UV source at the initial doses examined. Minimal repair was eventually observed upon medium-pressure UV lamp exposure when doses were lowered to 3 mJ/cm2. This study clearly indicates differences in repair potential under laboratory conditions between irradiation from low-pressure and medium-pressure UV sources of the type used in water treatment.


Sign in / Sign up

Export Citation Format

Share Document