scholarly journals Oxidation of Selected Trace Organic Compounds through the Combination of Inline Electro-Chlorination with UV Radiation (UV/ECl2) as Alternative AOP for Decentralized Drinking Water Treatment

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3275
Author(s):  
Philipp Otter ◽  
Katharina Mette ◽  
Robert Wesch ◽  
Tobias Gerhardt ◽  
Frank-Marc Krüger ◽  
...  

A large variety of Advanced Oxidation Processes (AOPs) to degrade trace organic compounds during water treatment have been studied on a lab scale in the past. This paper presents the combination of inline electrolytic chlorine generation (ECl2) with low pressure UV reactors (UV/ECl2) in order to allow the operation of a chlorine-based AOP without the need for any chlorine dosing. Lab studies showed that from a Free Available Chlorine (FAC) concentration range between 1 and 18 mg/L produced by ECl2 up to 84% can be photolyzed to form, among others, hydroxyl radicals (OH) with an UV energy input of 0.48 kWh/m3. This ratio could be increased to 97% by doubling the UV energy input to 0.96 kWh/m3 and was constant throughout the tested FAC range. Also the achieved radical yield of 64% did not change along the given FAC concentration range and no dependence between pH 6 and pH 8 could be found, largely simplifying the operation of a pilot scale system in drinking water treatment. Whereas with ECl2 alone only 5% of benzotriazoles could be degraded, the combination with UV improved the degradation to 89%. Similar results were achieved for 4-methylbenzotriazole, 5-methylbenzotriazole and iomeprol. Oxipurinol and gabapentin were readily degraded by ECl2 alone. The trihalomethanes values were maintained below the Germany drinking water standard of 50 µg/L, provided residual chlorine concentrations are kept within the permissible limits. The here presented treatment approach is promising for decentralized treatment application but requires further optimization in order to reduce its energy requirements.

Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 479 ◽  
Author(s):  
Alexander Sperlich ◽  
Mareike Harder ◽  
Frederik Zietzschmann ◽  
Regina Gnirss

1986 ◽  
Vol 20 (3) ◽  
pp. 249-253 ◽  
Author(s):  
Stephen W. Maloney ◽  
Jacques. Manem ◽  
Joel. Mallevialle ◽  
Francois. Fiessinge

2001 ◽  
Vol 1 ◽  
pp. 39-43 ◽  
Author(s):  
V. Zitko

Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.


2019 ◽  
Vol 24 (1) ◽  
pp. 135-163
Author(s):  
Jader Martínez Girón ◽  
Jenny Vanessa Marín-Rivera ◽  
Mauricio Quintero-Angel

Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.


2020 ◽  
Vol 382 ◽  
pp. 123044 ◽  
Author(s):  
Zhenqi Du ◽  
Ruibao Jia ◽  
Congcong Li ◽  
Pengwei Cui ◽  
Wuchang Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document