scholarly journals FACILITY MANAGEMENT USING DIGITAL OBEYA ROOM BY INTEGRATING BIM-LEAN APPROACHES – AN EMPIRICAL STUDY

2018 ◽  
Vol 24 (8) ◽  
pp. 581-591 ◽  
Author(s):  
Daniel Luiz de Mattos Nascimento ◽  
Osvaldo Luiz Gonçalves Quelhas ◽  
Marcelo Jasmim Meiriño ◽  
Rodrigo Goyannes Gusmão Caiado ◽  
Simone D. J. Barbosa ◽  
...  

This paper applies a methodology for interdisciplinary Facilities Management (FM) by alingment between Building Information Modeling (BIM) and Lean. Initially, the literature review of BIM, FM and Lean principles. Afterwards, the research applies the Digital Obeya Room for improved FM and describes its application on a real-world case study. Lastly, the work presents a survey with specialists to assess the relevance of each BIM-Lean concepts and correlate their perceptions with the empirical results. The main collaborations of this work are: a conceptual framework that relates the PDCA (Plan-Do-Check-Act) cycle with BIM-Lean approaches; the identification of the most relevant BIM functionalies and Lean principles; and the real-world application of the framework procedures on FM.

Facilities ◽  
2019 ◽  
Vol 37 (7/8) ◽  
pp. 455-483 ◽  
Author(s):  
Manish K. Dixit ◽  
Varusha Venkatraj ◽  
Mohammadreza Ostadalimakhmalbaf ◽  
Fatemeh Pariafsai ◽  
Sarel Lavy

Purpose The purpose of this study is to investigate factors that impede the integration of facilities management (FM) into building information modeling (BIM) technology. The use of BIM technology in the commercial construction industry has grown enormously in recent years. Its application to FM, however, is still limited. The literature highlights issues that hinder BIM–FM integration, which are studied and discussed in detail in this paper. Design/methodology/approach A review of literature is conducted to identify and categorize key issues hampering the application of BIM to FM. This paper has also designed a questionnaire based on a literature review and surveyed FM professionals at two industry events. Using the collected responses, these issues are analyzed and discussed using non-parametric statistical analyses. Findings A total of 16 issues are identified through the literature review of 54 studies under the four categories of BIM-execution and information-management, technological, cost-based and legal and contractual issues. The results of the survey of FM professionals (with 57 complete responses) reveal that the single most important issue is the lack of FM involvement in project phases when BIM is evolving. Originality/value The findings of this study could assist the construction industry (e.g. building-material and equipment manufacturers, design professionals, general contractors, construction managers, owners and facility managers) with creating guidelines that would help in BIM–FM integration. BIM is a virtual database that contains important design and construction information, which can be used for effective and efficient life cycle management if building data are captured completely and accurately with a facility manager’s involvement.


Facilities ◽  
2016 ◽  
Vol 34 (3/4) ◽  
pp. 233-246 ◽  
Author(s):  
Alireza Golabchi ◽  
Manu Akula ◽  
Vineet Kamat

Purpose Organizations involved in facility management (FM) can use building information modeling (BIM) as a knowledge repository to document evolving facility information and to support decisions made by the facility managers during the operational life of a facility. Despite ongoing advances in FM technologies, FM practices in most facilities are still labor intensive, time consuming and often rely on unreliable and outdated information. To address these shortcomings, the purpose of this study is to propose an automated approach that demonstrates the potential of using BIM to develop algorithms that automate decision-making for FM applications. Design/methodology/approach A BIM plug-in tool is developed that uses a fault detection and diagnostics (FDD) algorithm to automate the process of detecting malfunctioning heating, ventilation, and air conditioning (HVAC) equipment. The algorithm connects to a complaint ticket database and automates BIM to determine potentially damaged HVAC system components and develops a plan of action for the facility inspectors accordingly. The approach has been implemented as a case study in an operating facility to improve the process of HVAC system diagnosis and repair. Findings By implementing the proposed application in a case study, the authors found that automated BIM approaches such as the one developed in this study, can be highly beneficial in FM practices by increasing productivity and lowering costs associated with decision-making. Originality/value This study introduces an innovative approach that leverages BIM for automated fault detection in operational buildings. FM personnel in charge of HVAC inspection and repair can highly benefit from the proposed approach, as it eliminates the time required to locate HVAC equipment at fault manually.


Author(s):  
Nguyen Manh Tuan

The concepts of Building Information Modeling (BIM) and Lean construction are increasingly popular and used for the purpose of improving the efficiency of construction projects. The Lean construction approach helps optimize the system, thereby minimizing the waste and increase the maximum amount of value for clients. This is in line with the effectiveness of BIM for the purpose of analyzing, evaluating, and managing projects based on the virtual information model before, during and after construction. The combination of BIM and Lean construction will certainly be the trend of the construction industry in the near future. This paper aims to analyze the integration of Lean construction principles in the BIM coordination process through a specific case study. The project management unit is responsible for managing and evaluating BIM models from consultants and contractors and serves as the project's BIM coordinator. Keywords: building information modeling; BIM coordination process; Lean construction; Lean principles. Received 20 November 2018, Revised 30 December 2018, Accepted 25 January 2019


2021 ◽  
Vol 13 (13) ◽  
pp. 7014
Author(s):  
Ryan Loeh ◽  
Jess W. Everett ◽  
William T. Riddell ◽  
Douglas B. Cleary

This study investigates the feasibility and benefits of transferring data between Autodesk Revit (used for building information modeling (BIM)) and BUILDER SMS (used for sustainable facility management (SFM)). Two data transfer methods were evaluated using a case study; one involved entirely manual data transfer, the other a combination of manual and automatic. Of the data transfer methods evaluated, the manual/automated hybrid was determined to be the best option, especially when regular updates are envisioned. The case study produced an enhanced BIM model that can be used to support sustainable facility management, called here an SFM-enhanced BIM model. An integration workflow is proposed for efficiently creating future SFM-enhanced BIM models. A focus group of facilities management professionals evaluated the case study BIM model. The focus group was most interested in the visualization capabilities—e.g., filtered views for condition assessments—and the ability to view the BIM model on a tablet/mobile device during on-site operation and maintenance activities.


2019 ◽  
Vol 18 (4) ◽  
pp. 923-940
Author(s):  
Abdul Rahman Ahsan Usmani ◽  
Abdalrahman Elshafey ◽  
Masoud Gheisari ◽  
Changsaar Chai ◽  
Eeydzah Binti Aminudin ◽  
...  

Purpose Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built documentation in construction and facility management domains. However, there is lack of applied research and use cases integrating 3 D laser scanner surveying with building information modeling (BIM) for existing facilities in Malaysia. This study aims to develop a scan to as-built BIM workflow to use 3 D laser scanner surveying and create as-built building information models of an existing complex facility in Malaysia. Design/methodology/approach A case study approach was followed to develop a scan to as-built BIM workflow through four main steps: 3 D laser scanning, data preprocessing, data registration and building information modeling. Findings This case study proposes a comprehensive scan to as-built BIM workflow which illustrates all the required steps to create a precise 3 D as-built building information model from scans. This workflow was successfully implemented to the Eco-Home facility at the Universiti Teknologi Malaysia. Originality/value Scan to as-built BIM is a digital alternative to manual and tedious process of documentation of as-built condition of a facility and provides a detail process using laser scans to create as-built building information models of facilities.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Sign in / Sign up

Export Citation Format

Share Document