scholarly journals EMPIRICAL SHEAR BASED MODEL FOR PREDICTING PLATE END DEBONDING IN FRP STRENGTHENED RC BEAMS

2021 ◽  
Vol 27 (2) ◽  
pp. 117-138
Author(s):  
Ahmed K. El-Sayed ◽  
Mohammed A. Al-Saawani ◽  
Abdulaziz I. Al-Negheimish

This paper presents the development of a simplified model for predicting plate end (PE) debonding capacity of reinforced concrete (RC) beams flexurally strengthened using fiber reinforced polymers (FRP). The proposed model is based on the concrete shear strength of the beams considering main parameters known to affect the opening of the shear cracks and consequently affect PE debonding. The model considers also the effect of the location of the cut-off point of FRP plate along the span of the beam. The proposed model was verified against experimental database of 128 FRP-strengthened beams collected from previous studies that failed in PE debonding. In addition, the predictions of the proposed model were also compared with those of the existing PE debonding models. The predictions of the model were found to be comparable to the best predictions provided by the existing models, yet the proposed model is simpler. Furthermore, the proposed model was combined with the ACI 440 IC debonding equation to provide a procedure for predicting the governing debonding failure mode in FRP strengthened RC beams. The procedure was validated against 238 beam tests available in the literature, and shown to be a reliable approach.

2012 ◽  
Vol 587 ◽  
pp. 36-41 ◽  
Author(s):  
S.F.A. Rafeeqi ◽  
S.U. Khan ◽  
N.S. Zafar ◽  
T. Ayub

In this paper, behaviour of nine (09) RC beams (including two control beams) after unbonding and exposing flexural reinforcement has been studied which were intentionally designed and detailed to observe flexural and shear failure. Beams have been divided into three groups based on failure mode and unbounded and exposed reinforcement. Beams have been tested under two-point loading up to failure. Experimental results are compared in terms of beam behaviour with respect to flexural capacity and failure mode which revealed that the exposed reinforcement does not altered flexural capacity significantly and unbondedness positively influences shear strength; however, serviceability performance of beams with unbonded and exposed reinforcement is less.


2021 ◽  
Vol 19 (2) ◽  
pp. 207-218
Author(s):  
Milos Milovancevic

The main aim of the study was to perform selection procedure in order to find the optimal predictors for the shear strength of fibre reinforced polymers (FRP) used as internal reinforcement for reinforced concrete (RC) beams. The procedure was performed by adaptive neuro fuzzy inference system (ANFIS) and all available parameters are included. The ANFIS model could be used as simplification of the shear strength analysis of the FRP-RC beams. MATLAB software was used for the ANFIS application for the shear strength prediction of the FRP-RC beams. The results from the searching procedure indicated that ?beam width? and ?effective depth? form the optimal combination of two input attributes or two predictors for the shear strength prediction of the FRP-RC beams. This selected two predictors could be used effectively to estimate the strength of the FRP-RC beams.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3322
Author(s):  
Abdulaziz I. Al-Negheimish ◽  
Ahmed K. El-Sayed ◽  
Mohammed A. Al-Saawani ◽  
Abdulrahman M. Alhozaimy

Plate end (PE) debonding is one of the critical debonding failure modes that may occur in reinforced concrete (RC) beams strengthened with externally bonded fiber reinforced polymers (FRPs). This study investigated the effect of internal steel stirrups on the PE debonding failure load of FRP-strengthened RC beams. The dimensions of the beams were 3400 × 400 × 200 mm. The beams were strengthened with carbon FRP (CFRP) sheets bonded to the soffit of the beams. The beams were divided into two series based on the distance of the cutoff point of the CFRP sheets from the nearest support. This distance was 50 mm or 300 mm, and the amount of steel stirrups was varied in terms of varying the stirrup diameter and spacing. The beams were simply supported and tested under four-point bending. The test results indicate that the effect of stirrups on the load carrying capacity of the beams was more pronounced for the beams with CFRP sheets extended close to the supports. It was also indicated that beams with larger amounts of stirrups failed in PE debonding by concrete cover separation while beams with lower amounts of stirrups failed in PE by either PE interfacial debonding or critical diagonal crack-induced debonding. The beams were analyzed using several analytical models from design guidelines and the literature. The result of analysis indicates that most of the available models failed to reflect the effect of stirrups in predicting PE debonding failure load of the beams. On the other hand, the models of El-Sayed et al. and Teng and Yao were able to capture such an effect with the best predictions provided by El-Sayed et al. model.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Danying Gao ◽  
Changhui Zhang

The shear failure of a reinforced concrete beam generally occurs when the principal tensile stress near the neutral axis is equal to or greater than the tension strength of concrete. In order to set up a model for shear strength for FRP bar reinforced concrete beams without stirrups by the mechanical method, this paper equivalently transformed the FRP bar reinforced concrete rectangular beam with cracks as one composed of ideal elastic material to facilitate the analysis and proposed a new and more reasonable model of shear strength for FRP bar reinforced concrete beams without stirrups. Then, an experimental database including 235 FRP bar reinforced beams without stirrups was compiled to verify the validity of the proposed model. It was found that the values from the proposed model are in better agreement with the experimental results of shear strength of FRP bar reinforced concrete beams without stirrups in comparison with the models in codes.


Sign in / Sign up

Export Citation Format

Share Document