scholarly journals Companies Credit Risk Assessment Methods for Investment Decision Making

2017 ◽  
Vol 9 (2) ◽  
pp. 220-229 ◽  
Author(s):  
Dovilė Peškauskaitė ◽  
Daiva Jurevičienė

As the banks have tightened lending requirements, companies look for alternative sources of external funding. One of such is bonds issue. Unfortunately, corporate bonds issue as a source of funding is rare in Lithuania. This occurs because companies face with a lack of information, investors fear to take on credit risk. Credit risk is defined as a borrower’s failure to meet its obligation. Investors, in order to avoid credit risk, have to assess the state of the companies. The goal of the article is to determine the most informative methods of credit risk assessment. The article summarizes corporate lending sources, analyzes corporate default causes and credit risk assessment methods. The study based on the SWOT analysis shows that investors before making an investment decision should evaluate both the business risk,using qualitative method CAMPARI, and the financial risk, using financial ratio analysis.

2011 ◽  
Vol 17 (2) ◽  
pp. 369-381 ◽  
Author(s):  
Vytautas Boguslauskas ◽  
Ričardas Mileris ◽  
Rūta Adlytė

The assessment and modeling of the credit risk is one of the most important topics in the field of financial risk management. In this investigation the credit risk assessment model was developed and tested for Lithuanian companies. 20 financial ratios of the companies were calculated for each year of the 3 year period of interest. The analysis of variance (ANOVA) and Kolmogorov-Smirnov test were applied and the set of variables reduced from 60 to 25. Logistic regression was used for the classification of the companies into reliable and not reliable ones. Financial ratios, having the highest correlation to the possibility of default were selected for further investigation and several credit ratings were attributed to the companies according to these variables’ values. The average values of Mahalanobis Distances calculated for the most reliable companies were the lowest and these values increased with a decreased reliability of the company. The differences between Mahalanobis Distances of the companies having different credit ratings confirmed the reliability of the model results. Santrauka Kredito rizikos vertinimas ir modeliavimas – viena iš aktualiausiu temų, kalbant apie finansinės rizikos valdymą. Atlikto tyrimo metu buvo sukurtas kredito rizikos modelis. šis modelis išbandytas 198 Įmonių aibėje, skaičiuojant po 20 finansinių rodiklių 3 analizuojamų metu laikotarpiu. Panaudojus ANOVA metodą ir Kolmogorovo – Smirnovo statistiką, kintamųjų kiekis buvo sumažintas nuo 60 iki 25 rodiklių. Įmonįu klasifikavimui į 2 grupes: patikimus ir nepatikimus banko klientus, atsižvelgiant į jų įsipareigojimų nevykdymo tikimybę, buvo naudojama logistinė regresija. 97 proc. patikimų (nebankrutavusių) ir 82 proc. nepatikimų (bankrutavusių) įmonių suklasifikuotos teisingai. Tolimesniam tyrimui atrinkti 7 finansiniai rodikliai, kurių koreliacinis ryšys su įsipareigojimų nevykdymo tikimybe buvo didžiausias. Atsižvelgiant į šių kintamųjų reikšmės, įmonėms buvo priskirti 9 kredito reitingai. Vidutines Mahalanobio atstumu reikšmes, apskaiČiuotos patikimiausioms kompanijoms buvo mažiausios; šios reikšmės didėjo, mažejantįmonių patikimumui. Skirtingį reitingį įmonėms apskaiČiuoti Mahalanobio atstumų skirtumai, pagrindė modelio rezultatų patikimumą.


Author(s):  
Rui Li ◽  
Shizhe Deng ◽  
Jianquan Zhang ◽  
Hao He ◽  
Yaohui Jin ◽  
...  

JSIAM Letters ◽  
2016 ◽  
Vol 8 (0) ◽  
pp. 37-40 ◽  
Author(s):  
Suguru Yamanaka ◽  
Hidetoshi Nakagawa ◽  
Masaaki Sugihara

Sign in / Sign up

Export Citation Format

Share Document