scholarly journals Infrared Absolute Calibration. I. Comparison of Sirius with Fainter Calibration Stars

2022 ◽  
Vol 163 (2) ◽  
pp. 45
Author(s):  
G. H. Rieke ◽  
Kate Su ◽  
G. C. Sloan ◽  
E. Schlawin

Abstract A challenge in absolute calibration is to relate very bright stars with physical flux measurements to faint ones within range of modern instruments, e.g., those on large ground-based telescopes or the James Webb Space Telescope (JWST). We propose Sirius as the fiducial color standard. It is an A0V star that is slowly rotating and does not have infrared excesses due to either hot dust or a planetary debris disk; it also has a number of accurate (∼1%–2%) absolute flux measurements. We accurately transfer the near-infrared flux from Sirius to BD +60 1753, an unobscured early A-type star (A1V, V ≈ 9.6, E(B – V) ≈ 0.009) that is faint enough to serve as a primary absolute flux calibrator for JWST. Its near-infrared spectral energy distribution and that of Sirius should be virtually identical. We have determined its output relative to that of Sirius in a number of different ways, all of which give consistent results within ∼1%. We also transfer the calibration to GSPC P330-E, a well-calibrated close solar analog (G2V). We have emphasized the 2MASS K S band, since it represents a large number and long history of measurements, but the theoretical spectra (i.e., from CALSPEC) of these stars can be used to extend this result throughout the near- and mid-infrared.

2019 ◽  
Vol 15 (S341) ◽  
pp. 17-20
Author(s):  
Mariko Kubo ◽  
Jun Toshikawa ◽  
Nobunari Kashikawa ◽  
Hisakazu Uchiyama ◽  
Kei Ito

AbstractOne of the key questions of the observational cosmology is how the environmental dependence of galaxies today formed. Proto-clusters, galaxy overdense regions at high redshift are important laboratory to study the formation history of clusters of galaxies. We perform the first statistic study of far-infrared spectral energy distribution(SED)s of proto-clusters at z ∼ 4 by the stacking analysis of Planck/ AKARI/ IRAS images of proto-clusters at z ∼ 4 selected from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey. By stacking ∼ 200 proto-clusters, we successfully constrain their average total SEDs in 60–850μm. Our results imply the excess of dusty starburst galaxies with star formation rate several 1000 M⊙yr−1 in total and obscured AGNs in proto-clusters at z ∼ 4.


2013 ◽  
Vol 555 ◽  
pp. A107 ◽  
Author(s):  
M. Bonnefoy ◽  
A. Boccaletti ◽  
A.-M. Lagrange ◽  
F. Allard ◽  
C. Mordasini ◽  
...  

2020 ◽  
Vol 634 ◽  
pp. A1 ◽  
Author(s):  
◽  
O. Pfuhl ◽  
R. Davies ◽  
J. Dexter ◽  
H. Netzer ◽  
...  

We present near-infrared interferometric data on the Seyfert 2 galaxy NGC 1068, obtained with the GRAVITY instrument on the European Southern Observatory Very Large Telescope Interferometer. The extensive baseline coverage from 5 to 60 Mλ allowed us to reconstruct a continuum image of the nucleus with an unrivaled 0.2 pc resolution in the K-band. We find a thin ring-like structure of emission with a radius r = 0.24 ± 0.03 pc, inclination i = 70 ± 5°, position angle PA = −50 ± 4°, and h/r <  0.14, which we associate with the dust sublimation region. The observed morphology is inconsistent with the expected signatures of a geometrically and optically thick torus. Instead, the infrared emission shows a striking resemblance to the 22 GHz maser disc, which suggests they share a common region of origin. The near-infrared spectral energy distribution indicates a bolometric luminosity of (0.4–4.7) × 1045 erg s−1, behind a large AK ≈ 5.5 (AV ≈ 90) screen of extinction that also appears to contribute significantly to obscuring the broad line region.


1997 ◽  
Vol 163 ◽  
pp. 725-726
Author(s):  
K.-W. Hodapp ◽  
E. F. Ladd

Stars in the earliest phases of their formation, i.e., those accreting the main component of their final mass, are deeply embedded within dense cores of dust and molecular material. Because of the high line-of-sight extinction and the large amount of circumstellar material, stellar emission is reprocessed by dust into long wavelength radiation, typically in the far-infrared and sub-millimeter bands. Consequently, the youngest sources are strong submillimeter continuum sources, and often undetectable as point sources in the near-infrared and optical. The most deeply embedded of these sources have been labelled “Class 0” sources by André, Ward-Thompson, & Barsony (1994), in an extension of the spectral energy distribution classification scheme first proposed by Adams, Lada, & Shu (1987).


Author(s):  
P K Nayak ◽  
A Subramaniam ◽  
S Subramanian ◽  
S Sahu ◽  
C Mondal ◽  
...  

Abstract We have demonstrated the advantage of combining multi-wavelength observations, from the ultraviolet (UV) to near-infrared, to study Kron 3, a massive star cluster in the Small Magellanic Cloud. We have estimated the radius of the cluster Kron 3 to be 2${_{.}^{\prime}}$0 and for the first time, we report the identification of NUV-bright red clump (RC) stars and the extension of the RC in colour and magnitude in the NUV versus (NUV−optical) colour-magnitude diagram (CMD). We found that extension of the RC is an intrinsic property of the cluster and it is not due to contamination of field stars or differential reddening across the field. We studied the spectral energy distribution of the RC stars, and estimated a small range in temperature ∼5000–5500 K, luminosity ∼60–90 L⊙ and radius ∼8.0–11.0 R⊙ supporting their RC nature. The range of UV magnitudes amongst the RC stars (∼23.3 to 24.8 mag) is likely caused by the combined effects of variable mass loss, variation in initial helium abundance (Yini = 0.23 to 0.28), and a small variation in age (6.5-7.5 Gyr) and metallicity ([Fe/H] = −1.5 to −1.3). Spectroscopic follow-up observations of RC stars in Kron 3 are necessary to confirm the cause of the extended RC.


2018 ◽  
Vol 617 ◽  
pp. L2 ◽  
Author(s):  
A. Müller ◽  
M. Keppler ◽  
Th. Henning ◽  
M. Samland ◽  
G. Chauvin ◽  
...  

Context. The observation of planets in their formation stage is a crucial but very challenging step in understanding when, how, and where planets form. PDS 70 is a young pre-main sequence star surrounded by a transition disk, in the gap of which a planetary-mass companion has recently been discovered. This discovery represents the first robust direct detection of such a young planet, possibly still at the stage of formation. Aims. We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods. We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 yr, which allowed us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96–3.8 μm). We use different atmospheric models covering a large parameter space in temperature, log g, chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results. PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range 1000–1600 K and log g no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 RJ with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions. This study provides a comprehensive data set on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical of young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planetflux.


2018 ◽  
Vol 615 ◽  
pp. L14 ◽  
Author(s):  
N. M. Murillo ◽  
D. Harsono ◽  
M. McClure ◽  
S.-P. Lai ◽  
M. R. Hogerheijde

Context. VLA 1623−2417 is a triple protostellar system deeply embedded in Ophiuchus A. Sources A and B have a separation of 1.1″, making their study difficult beyond the submillimeter regime. Lack of circumstellar gas emission suggested that VLA 1623−2417 B has a very cold envelope and is much younger than source A, which is generally considered the prototypical Class 0 source. Aims. We explore the consequences of new ALMA Band 9 data on the spectral energy distribution (SED) of VLA 1623−2417 and their inferred nature. Methods. We constructed and analyzed the SED of each component in VLA 1623−2417 using dust continuum observations spanning from centimeter to near-infrared wavelengths. Results. The ALMA Band 9 data presented in this work show that the SED of VLA 1623−2417 B does not peak at 850 µm as previously expected, but instead presents the same shape as VLA 1623−2417 A at wavelengths shorter than 450 µm. Conclusions. The results presented in this work indicate that the previous assumption that the flux in Herschel and Spitzer observations is solely dominated by VLA 1623−2417 A is not valid, and instead, VLA 1623−2417 B most likely contributes a significant portion of the flux at λ < 450 µm. These results, however, do not explain the lack of circumstellar gas emission and puzzling nature of VLA 1623−2417 B.


2018 ◽  
Vol 617 ◽  
pp. A76 ◽  
Author(s):  
G. Chauvin ◽  
R. Gratton ◽  
M. Bonnefoy ◽  
A.-M. Lagrange ◽  
J. de Boer ◽  
...  

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4–5 MJup have been directly imaged. Aims. Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light. Methods. We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017. Results. We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7–L9 dwarf spectral templates. The extremely red 1–4 μm spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet’s orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2+0.3−0.2, with a semi-major axis ~52 au corresponding to orbital periods of ~288 yr and an inclination that peaks at i = 141°, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations.


2019 ◽  
Vol 626 ◽  
pp. L2 ◽  
Author(s):  
S. Facchini ◽  
E. F. van Dishoeck ◽  
C. F. Manara ◽  
M. Tazzari ◽  
L. Maud ◽  
...  

The large majority of protoplanetary disks have very compact continuum emission (≲15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (∼10 mJy) orbiting the TTauri star CX Tau at a resolution of ∼40 mas, ∼5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of 12CO is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (> 5) strongly points to radial drift, and closely matches the predictions of theoretical models.


Sign in / Sign up

Export Citation Format

Share Document