scholarly journals An image of the dust sublimation region in the nucleus of NGC 1068

2020 ◽  
Vol 634 ◽  
pp. A1 ◽  
Author(s):  
◽  
O. Pfuhl ◽  
R. Davies ◽  
J. Dexter ◽  
H. Netzer ◽  
...  

We present near-infrared interferometric data on the Seyfert 2 galaxy NGC 1068, obtained with the GRAVITY instrument on the European Southern Observatory Very Large Telescope Interferometer. The extensive baseline coverage from 5 to 60 Mλ allowed us to reconstruct a continuum image of the nucleus with an unrivaled 0.2 pc resolution in the K-band. We find a thin ring-like structure of emission with a radius r = 0.24 ± 0.03 pc, inclination i = 70 ± 5°, position angle PA = −50 ± 4°, and h/r <  0.14, which we associate with the dust sublimation region. The observed morphology is inconsistent with the expected signatures of a geometrically and optically thick torus. Instead, the infrared emission shows a striking resemblance to the 22 GHz maser disc, which suggests they share a common region of origin. The near-infrared spectral energy distribution indicates a bolometric luminosity of (0.4–4.7) × 1045 erg s−1, behind a large AK ≈ 5.5 (AV ≈ 90) screen of extinction that also appears to contribute significantly to obscuring the broad line region.

2022 ◽  
Vol 163 (2) ◽  
pp. 45
Author(s):  
G. H. Rieke ◽  
Kate Su ◽  
G. C. Sloan ◽  
E. Schlawin

Abstract A challenge in absolute calibration is to relate very bright stars with physical flux measurements to faint ones within range of modern instruments, e.g., those on large ground-based telescopes or the James Webb Space Telescope (JWST). We propose Sirius as the fiducial color standard. It is an A0V star that is slowly rotating and does not have infrared excesses due to either hot dust or a planetary debris disk; it also has a number of accurate (∼1%–2%) absolute flux measurements. We accurately transfer the near-infrared flux from Sirius to BD +60 1753, an unobscured early A-type star (A1V, V ≈ 9.6, E(B – V) ≈ 0.009) that is faint enough to serve as a primary absolute flux calibrator for JWST. Its near-infrared spectral energy distribution and that of Sirius should be virtually identical. We have determined its output relative to that of Sirius in a number of different ways, all of which give consistent results within ∼1%. We also transfer the calibration to GSPC P330-E, a well-calibrated close solar analog (G2V). We have emphasized the 2MASS K S band, since it represents a large number and long history of measurements, but the theoretical spectra (i.e., from CALSPEC) of these stars can be used to extend this result throughout the near- and mid-infrared.


2019 ◽  
Vol 628 ◽  
pp. A61 ◽  
Author(s):  
N. Lodieu ◽  
F. Allard ◽  
C. Rodrigo ◽  
Y. Pavlenko ◽  
A. Burgasser ◽  
...  

Aims. The aim of the project is to define metallicity/gravity/temperature scales for different spectral types of metal-poor M dwarfs. Methods. We obtained intermediate-resolution ultraviolet (R ∼ 3300), optical (R ∼ 5400), and near-infrared (R ∼ 3900) spectra of 43 M subdwarfs (sdM), extreme subdwarfs (esdM), and ultra-subdwarfs (usdM) with the X-shooter spectrograph on the European Southern Observatory Very Large Telescope. We compared our atlas of spectra to the latest BT-Settl synthetic spectral energy distribution over a wide range of metallicities, gravities, and effective temperatures to infer the physical properties for the whole M dwarf sequence (M0–M9.5) at sub-solar metallicities and constrain the latest atmospheric models. Results. The BT-Settl models accurately reproduce the observed spectra across the 450–2500 nm wavelength range except for a few regions. We find that the best fits are obtained for gravities of log (g) = 5.0–5.5 for the three metal classes. We infer metallicities of [Fe/H] = −0.5, −1.5, and −2.0 ± 0.5 dex and effective temperatures of 3700–2600 K, 3800–2900 K, and 3700–2900 K for subdwarfs, extreme subdwarfs, and ultra-subdwarfs, respectively. Metal-poor M dwarfs tend to be warmer by about 200 ± 100 K and exhibit higher gravity than their solar-metallicity counterparts. We derive abundances of several elements (Fe, Na, K, Ca, Ti) for our sample but cannot describe their atmospheres with a single metallicity parameter. Our metallicity scale expands the current scales available for mildly metal-poor planet-host low-mass stars. Our compendium of moderate-resolution spectra covering the 0.45–2.5 micron range represents an important resource for large-scale surveys and space missions to come.


2019 ◽  
Vol 630 ◽  
pp. L6 ◽  
Author(s):  
A. Mehner ◽  
W.-J. de Wit ◽  
D. Asmus ◽  
P. W. Morris ◽  
C. Agliozzo ◽  
...  

η Car is one of the most luminous and massive stars in our Galaxy and is the brightest mid-IR source in the sky outside our solar system. Since the late 1990s, the central source has dramatically brightened at UV and optical wavelengths. This might be explained by a decrease in circumstellar dust extinction. We aim to establish the mid-IR flux evolution and further our understanding of the star’s UV and optical brightening. Mid-IR images from 8−20 μm were obtained in 2018 with VISIR at the Very Large Telescope. Archival data from 2003 and 2005 were retrieved from the ESO Science Archive Facility, and historical records were collected from publications. We present mid-IR images of η Car with the highest angular resolution to date at the corresponding wavelengths (≥0.22″). We reconstruct the mid-IR evolution of the spectral energy distribution of the spatially integrated Homunculus nebula from 1968 to 2018 and find no long-term changes. The bolometric luminosity of η Car has been stable over the past five decades. We do not observe a long-term decrease in the mid-IR flux densities that could be associated with the brightening at UV and optical wavelengths, but circumstellar dust must be declining in our line of sight alone. Short-term flux variations within about 25% of the mean levels could be present.


2018 ◽  
Vol 617 ◽  
pp. A42 ◽  
Author(s):  
K. Mattila ◽  
M. Haas ◽  
L. K. Haikala ◽  
Y-S. Jo ◽  
K. Lehtinen ◽  
...  

Context. Dark nebulae display a surface brightness because dust grains scatter light of the general interstellar radiation field (ISRF). High-galactic-latitudes dark nebulae are seen as bright nebulae when surrounded by transparent areas which have less scattered light from the general galactic dust layer. Aims. Photometry of the bright dark nebulae LDN 1780, LDN 1642, and LBN 406 shall be used to derive scattering properties of dust and to investigate the presence of UV fluorescence emission by molecular hydrogen and the extended red emission (ERE). Methods. We used multi-wavelength optical photometry and imaging at ground-based telescopes and archival imaging and spectroscopic UV data from the spaceborn GALEX and SPEAR/FIMS instruments. In the analysis we used Monte Carlo RT and both observational data and synthetic models for the ISRF in the solar neighbourhood. The line-of-sight extinctions through the clouds have been determined using near infrared excesses of background stars and the 200/250 μm far infrared emission by dust as measured using the ISO and Herschel space observatories. Results. The optical surface brightness of the three target clouds can be explained in terms of scattered light. The dust albedo ranges from ~0.58 at 3500 Å to ~0.72 at 7500 Å. The spectral energy distribution of LDN 1780 is explained in terms of optical depth and background scattered light effects instead of the original published suggestion in terms of ERE. The far-ultraviolet surface brightness of LDN 1780 cannot be explained by scattered light only. In LDN 1780, H2 fluorescent emission in the wavelength range 1400–1700 Å has been detected and analysed. Conclusions. Our albedo values are in good agreement with the predictions of the dust model of Weingartner and Draine and with the THEMIS CMM model for evolved core-mantle grains. The distribution of H2 fluorescent emission in LDN 1780 shows a pronounced dichotomy with a strong preference for its southern side where enhanced illumination is impinging from the Sco OB2 association and the O star ζ Oph. A good correlation is found between the H2 fluorescence and a previously mapped 21-cm excess emission. The H2 fluorescence emission in LDN 1780 has been modelled using a PDR code; the resulting values for H2 column density and the total gas density are consistent with the estimates derived from CO observations and optical extinction along the line of sight.


2001 ◽  
Vol 557 (2) ◽  
pp. 637-645 ◽  
Author(s):  
Daigo Tomono ◽  
Yoshiyuki Doi ◽  
Tomonori Usuda ◽  
Tetsuo Nishimura

2013 ◽  
Vol 555 ◽  
pp. A107 ◽  
Author(s):  
M. Bonnefoy ◽  
A. Boccaletti ◽  
A.-M. Lagrange ◽  
F. Allard ◽  
C. Mordasini ◽  
...  

2020 ◽  
Vol 498 (4) ◽  
pp. 5399-5416
Author(s):  
J V Hernández Santisteban ◽  
R Edelson ◽  
K Horne ◽  
J M Gelbord ◽  
A J Barth ◽  
...  

ABSTRACT We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to subdaily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the τ ∝ λ4/3 scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable component’s spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable (&lt;4 d) component arising from X-ray reprocessing, and a more slowly varying (&gt;100 d) component with an opposite lag to the reverberation signal.


2011 ◽  
Vol 7 (S284) ◽  
pp. 205-209
Author(s):  
Andreas Efstathiou ◽  
Natalie Christopher ◽  
Aprajita Verma ◽  
Ralf Siebenmorgen

AbstractWe present a new model for the infrared emission of the high redshift hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first demonstrate that the combination of the AGN tapered disc and starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of type 2 AGN measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the ν Sν distribution of the galaxy falls very steeply with increasing frequency (a characteristic of heavy absorption by dust) but shows a silicate feature in emission. We propose a model that assumes two components of emission: clouds that are associated with the narrow-line region and a highly obscured starburst. The emission from the clouds must suffer significantly stronger gravitational lensing compared to the emission from the torus to explain the observed spectral energy distribution.


1997 ◽  
Vol 163 ◽  
pp. 725-726
Author(s):  
K.-W. Hodapp ◽  
E. F. Ladd

Stars in the earliest phases of their formation, i.e., those accreting the main component of their final mass, are deeply embedded within dense cores of dust and molecular material. Because of the high line-of-sight extinction and the large amount of circumstellar material, stellar emission is reprocessed by dust into long wavelength radiation, typically in the far-infrared and sub-millimeter bands. Consequently, the youngest sources are strong submillimeter continuum sources, and often undetectable as point sources in the near-infrared and optical. The most deeply embedded of these sources have been labelled “Class 0” sources by André, Ward-Thompson, & Barsony (1994), in an extension of the spectral energy distribution classification scheme first proposed by Adams, Lada, & Shu (1987).


Author(s):  
P K Nayak ◽  
A Subramaniam ◽  
S Subramanian ◽  
S Sahu ◽  
C Mondal ◽  
...  

Abstract We have demonstrated the advantage of combining multi-wavelength observations, from the ultraviolet (UV) to near-infrared, to study Kron 3, a massive star cluster in the Small Magellanic Cloud. We have estimated the radius of the cluster Kron 3 to be 2${_{.}^{\prime}}$0 and for the first time, we report the identification of NUV-bright red clump (RC) stars and the extension of the RC in colour and magnitude in the NUV versus (NUV−optical) colour-magnitude diagram (CMD). We found that extension of the RC is an intrinsic property of the cluster and it is not due to contamination of field stars or differential reddening across the field. We studied the spectral energy distribution of the RC stars, and estimated a small range in temperature ∼5000–5500 K, luminosity ∼60–90 L⊙ and radius ∼8.0–11.0 R⊙ supporting their RC nature. The range of UV magnitudes amongst the RC stars (∼23.3 to 24.8 mag) is likely caused by the combined effects of variable mass loss, variation in initial helium abundance (Yini = 0.23 to 0.28), and a small variation in age (6.5-7.5 Gyr) and metallicity ([Fe/H] = −1.5 to −1.3). Spectroscopic follow-up observations of RC stars in Kron 3 are necessary to confirm the cause of the extended RC.


Sign in / Sign up

Export Citation Format

Share Document