scholarly journals Diffuse Ionized Gas in the Milky Way Disk

2017 ◽  
Vol 849 (2) ◽  
pp. 117 ◽  
Author(s):  
Matteo Luisi ◽  
L. D. Anderson ◽  
Dana S. Balser ◽  
Trey V. Wenger ◽  
T. M. Bania
2005 ◽  
Vol 632 (1) ◽  
pp. 277-282 ◽  
Author(s):  
T. Elwert ◽  
R.‐J. Dettmar

2006 ◽  
Vol 327 (1) ◽  
pp. 82-96 ◽  
Author(s):  
E. M. Berkhuijsen ◽  
D. Mitra ◽  
P. Müller

2019 ◽  
Vol 489 (4) ◽  
pp. 4862-4874
Author(s):  
L G Hou ◽  
X Y Gao

ABSTRACT Many of the Spitzer infrared bubbles identified by the Milky Way Project (MWP) are suggested to be $\rm{H \small {II}} $ regions in nature. More than 70 per cent of the ∼5000 known bubbles do not have radio recombination line (RRL) observations, hence have not been confirmed as $\rm{H \small {II}} $ regions. A systematic RRL survey should be helpful to identify the nature of the bubbles. With the Shanghai TianMa 65-m radio telescope, we searched for RRLs towards 216 selected Spitzer bubbles by simultaneously observing 19 RRLs in the C band (4–8 GHz). RRLs are detected in the directions of 75 of the 216 targets. 31 of the 75 RRL sources are classified as new detections, which are possibly from new $\rm{H \small {II}} $ regions or diffuse warm ionized medium; 36 of them are probably from the outskirts of nearby bright $\rm{H \small {II}} $ regions, rather than bubble-encircled ionized gas; and the detected RRLs towards 8 bubbles are identified from known $\rm{H \small {II}} $ regions. For 58 of the 75 RRL sources, we obtained their distances after resolving the kinematic distance ambiguity by combining the results of the H2CO absorption method, the $\rm{H \small {I}} $ emission/absorption method, and the $\rm{H \small {I}} $ self-absorption method. The low detection rate of new $\rm{H \small {II}} $ regions implies that a number of MWP bubbles in the DR1 catalogue are too faint if they are $\rm{H \small {II}} $ regions.


2019 ◽  
Vol 488 (1) ◽  
pp. 803-829 ◽  
Author(s):  
I Moumen ◽  
C Robert ◽  
D Devost ◽  
R P Martin ◽  
L Rousseau-Nepton ◽  
...  

ABSTRACT We present the first optical identification and confirmation of a sample of supernova remnants (SNRs) in the nearby galaxy NGC 3344. Using high spectral and spatial resolution data, obtained with the CFHT imaging Fourier transform spectrograph SITELLE, we identified about 2200 emission line regions, many of which are H ii regions, diffuse ionized gas regions, and also SNRs. Considering the stellar population and diffuse ionized gas background, which are quite important in NGC 3344, we have selected 129 SNR candidates based on four criteria for regions where the emission lines flux ratio [S ii]/H α ≥ 0.4. Emission lines of [O ii] λ3727, H β, [O iii] λλ4959,5007, H α, [N ii] λλ6548,6583, and [S ii] λλ6716,6731 have been measured to study the ionized gas properties of the SNR candidates. We adopted a self-consistent spectroscopic analysis, based on Sabbadin plots and Baldwin, Phillips & Terlevich diagrams, to confirm the shock-heated nature of the ionization mechanism in the candidates sample. With this analysis, we end up with 42 Confirmed SNRs, 45 Probable SNRs, and 42 Less likely SNRs. Using shock models, the confirmed SNRs seem to have a metallicity ranging between Large Magellanic Cloud and 2×solar. We looked for correlations between the size of the confirmed SNRs and their emission lines ratios, their galaxy environment, and their galactocentric distance: We see a trend for a metallicity gradient among the SNR population, along with some evolutionary effects.


2020 ◽  
Vol 494 (2) ◽  
pp. 1622-1646 ◽  
Author(s):  
C Espinosa-Ponce ◽  
S F Sánchez ◽  
C Morisset ◽  
J K Barrera-Ballesteros ◽  
L Galbany ◽  
...  

ABSTRACT We present a new catalogue of H ii regions based on the integral field spectroscopy (IFS) data of the extended CALIFA and PISCO samples. The selection of H ii regions was based on two assumptions: a clumpy structure with high contrast of H α emission and an underlying stellar population comprising young stars. The catalogue provides the spectroscopic information of 26 408 individual regions corresponding to 924 galaxies, including the flux intensities and equivalent widths of 51 emission lines covering the wavelength range between 3745 and 7200 Å. To our knowledge, this is the largest catalogue of spectroscopic properties of H ii regions. We explore a new approach to decontaminate the emission lines from diffuse ionized gas contribution. This diffuse gas correction was estimated to correct every emission line within the considered spectral range. With the catalogue of H ii regions corrected, new demarcation lines are proposed for the classical diagnostic diagrams. Finally, we study the properties of the underlying stellar populations of the H ii regions. It was found that there is a direct relationship between the ionization conditions on the nebulae and the properties of stellar populations besides the physicals condition on the ionized regions.


1997 ◽  
Vol 166 ◽  
pp. 173-176
Author(s):  
Olivier Dupin ◽  
Cécile Gry

AbstractWe present HST observations of the interstellar medium toward the star β CMa known to be located in a low density extension of the Local Bubble. Most of the matter in the sight-line is ionized and clumped in two main components. One of them, as well as one of the components detected toward ϵ CMa, is mostly ionized and only slightly depleted. Their ionization ratios are compatible with collisional ionization at T~25 000 K. These clouds could have been ionized by shocks related to the Local Bubble creation and also responsible of some dust grain sputtering.


Author(s):  
Ralf-Jürgen Dettmar ◽  
Jörn Rossa ◽  
Michael Dahlem ◽  
Roeland van der Marel

Sign in / Sign up

Export Citation Format

Share Document