scholarly journals Observational Constraints on Correlated Star Formation and Active Galactic Nuclei in Late-stage Galaxy Mergers

2017 ◽  
Vol 850 (1) ◽  
pp. 27 ◽  
Author(s):  
R. Scott Barrows ◽  
Julia M. Comerford ◽  
Nadia L. Zakamska ◽  
Michael C. Cooper
2019 ◽  
Vol 15 (S356) ◽  
pp. 345-347
Author(s):  
Khatun Rubinur ◽  
Mousumi Das ◽  
Preeti Kharb ◽  
P. T. Rahne

AbstractSimulations expect an enhanced star-formation and active galactic nuclei (AGN) activity during galaxy mergers, which can lead to formation of binary/dual AGN. AGN feedback can enhance or suppress star-formation. We have carried out a pilot study of a sample of ˜10 dual nuclei galaxies with AstroSat’s Ultraviolet Imaging Telescope (UVIT). Here, we present the initial results for two sample galaxies (Mrk 739, ESO 509) and deep multi-wavelength data of another galaxy (Mrk 212). UVIT observations have revealed signatures of positive AGN feedback in Mrk 739 and Mrk 212, and negative feedback in ESO 509. Deeper UVIT observations have recently been approved; these will provide better constraints on star-formation as well as AGN feedback in these systems.


2021 ◽  
Vol 923 (1) ◽  
pp. 36
Author(s):  
Aaron Stemo ◽  
Julia M. Comerford ◽  
R. Scott Barrows ◽  
Daniel Stern ◽  
Roberto J. Assef ◽  
...  

Abstract During galaxy mergers, gas and dust are driven toward the centers of merging galaxies, triggering enhanced star formation and supermassive black hole (SMBH) growth. Theory predicts that this heightened activity peaks at SMBH separations <20 kpc; if sufficient material accretes onto one or both of the SMBHs for them to become observable as active galactic nuclei (AGNs) during this phase, they are known as offset and dual AGNs, respectively. To better study these systems, we have built the ACS-AGN Merger Catalog, a large catalog (N = 204) of uniformly selected offset and dual AGN observed by the Hubble Space Telescope at 0.2 < z < 2.5 with separations <20 kpc. Using this catalog, we answer many questions regarding SMBH−galaxy coevolution during mergers. First, we confirm predictions that the AGN fraction peaks at SMBH pair separations <10 kpc; specifically, we find that the fraction increases significantly at pair separations of <4 kpc. Second, we find that AGNs in mergers are preferentially found in major mergers and that the fraction of AGNs found in mergers follows a logarithmic relation, decreasing as merger mass ratio increases. Third, we do not find that mergers (nor the major or minor merger subpopulations) trigger the most luminous AGNs. Finally, we find that nuclear column density, AGN luminosity, and host galaxy star formation rate have no dependence on SMBH pair separation or merger mass ratio in these systems, nor do the distributions of these values differ significantly from that of the overall AGN population.


2020 ◽  
Vol 499 (4) ◽  
pp. 5749-5764 ◽  
Author(s):  
Xihan Ji ◽  
Renbin Yan

ABSTRACT Optical diagnostic diagrams are powerful tools to separate different ionizing sources in galaxies. However, the model-constraining power of the most widely used diagrams is very limited and challenging to visualize. In addition, there have always been classification inconsistencies between diagrams based on different line ratios, and ambiguities between regions purely ionized by active galactic nuclei (AGNs) and composite regions. We present a simple reprojection of the 3D line ratio space composed of [N ii]λ6583/H α, [S ii]λλ6716, 6731/H α, and [O iii]λ5007/H β, which reveals its model-constraining power and removes the ambiguity for the true composite objects. It highlights the discrepancy between many theoretical models and the data loci. With this reprojection, we can put strong constraints on the photoionization models and the secondary nitrogen abundance prescription. We find that a single nitrogen prescription cannot fit both the star-forming locus and AGN locus simultaneously, with the latter requiring higher N/O ratios. The true composite regions stand separately from both models. We can compute the fractional AGN contributions for the composite regions, and define demarcations with specific upper limits on contamination from AGN or star formation. When the discrepancy about nitrogen prescriptions gets resolved in the future, it would also be possible to make robust metallicity measurements for composite regions and AGNs.


Author(s):  
C.-E. Green ◽  
M. R. Cunningham ◽  
J. A. Green ◽  
J. R. Dawson ◽  
P. A. Jones ◽  
...  

AbstractThe intensity ratios of HCO+/HCN and HNC/HCN (1-0) reveal the relative influence of star formation and active galactic nuclei (AGN) or black holes on the circum-nuclear gas of a galaxy, allowing the identification of X-ray dominated regions (XDRs) and Photon-dominated regions (PDRs). It is not always clear in the literature how this intensity ratio calculation has been, or should be performed. This paper discusses ratio calculation methods for interferometric data.


2014 ◽  
Vol 790 (1) ◽  
pp. 15 ◽  
Author(s):  
L. Sargsyan ◽  
A. Samsonyan ◽  
V. Lebouteiller ◽  
D. Weedman ◽  
D. Barry ◽  
...  

2009 ◽  
Vol 696 (1) ◽  
pp. 396-410 ◽  
Author(s):  
J. D. Silverman ◽  
F. Lamareille ◽  
C. Maier ◽  
S. J. Lilly ◽  
V. Mainieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document