scholarly journals Exploring the Galactic Warp through Asymmetries in the Kinematics of the Galactic Disk

2020 ◽  
Vol 905 (1) ◽  
pp. 49
Author(s):  
Xinlun Cheng ◽  
Borja Anguiano ◽  
Steven R. Majewski ◽  
Christian Hayes ◽  
Phil Arras ◽  
...  
Keyword(s):  
2020 ◽  
Vol 901 (1) ◽  
pp. 56 ◽  
Author(s):  
X.-Y. Li ◽  
Y. Huang ◽  
B.-Q. Chen ◽  
H.-F. Wang ◽  
W.-X. Sun ◽  
...  

1985 ◽  
Vol 106 ◽  
pp. 499-502
Author(s):  
Linda S. Sparke

The outer gas disk of our Galaxy (and many others) is warped, bending away from the plane defined by the inner disk. The bend begins just outside the solar circle; gas at longitudes ℓ ≃ 80° reaches highest above the plane, while material at ℓ ≃ 260° lies below it. Shortwavelength ripples are superposed. The orbit of a free particle inclined to the galactic disk precesses at a rate which depends on galactocentric radius; warped structures will tend to do the same, winding the warp into a tight spiral. The large-scale galactic warp has no sense of spirality, and is not obviously of recent origin - why then has it survived?


1967 ◽  
Vol 31 ◽  
pp. 355-356
Author(s):  
R. D. Davies

Observations at various frequencies between 136 and 1400 MHz indicate a considerable amount of structure in the galactic disk. This result appears consistent both with measured polarization percentages and with considerations of the strength of the galactic magnetic field.


2014 ◽  
Vol 788 (1) ◽  
pp. 89 ◽  
Author(s):  
Daisuke Toyouchi ◽  
Masashi Chiba

Author(s):  
L. V. Gramajo ◽  
T. Palma ◽  
D. Minniti ◽  
R. K. Saito ◽  
J. J. Clariá ◽  
...  

Abstract We present the first results obtained from an extensive study of eclipsing binary (EB) system candidates recently detected in the VISTA Variables in the Vía Láctea (VVV) near-infrared (NIR) Survey. We analyse the VVV tile d040 in the southern part of the Galactic disc wherein the interstellar reddening is comparatively low, which makes it possible to detect hundreds of new EB candidates. We present here the light curves and the determination of the geometric and physical parameters of the best candidates found in this ‘NIR window’, including 37 contact, 50 detached, and 13 semi-detached EB systems. We infer that the studied systems have an average of the $K_s$ amplitudes of $0.8$ mag and a median period of 1.22 days where, in general, contact binaries have shorter periods. Using the ‘Physics Of Eclipsing Binaries’ (PHOEBE) interactive interface, which is based on the Wilson and Devinney code, we find that the studied systems have low eccentricities. The studied EBs present mean values of about 5 700 and 4 900 K for the $T_1$ and $T_2$ components, respectively. The mean mass ratio (q) for the contact EB stars is $\sim$ 0.44. This new galactic disk sample is a first look at the massive study of NIR EB systems.


2021 ◽  
Vol 2021 (07) ◽  
pp. E01
Author(s):  
Harrison Ploeg ◽  
Chris Gordon ◽  
Roland Crocker ◽  
Oscar Macias

1998 ◽  
Vol 11 (1) ◽  
pp. 430-432
Author(s):  
Ted Von Hippel

The study of cluster white dwarfs (WDs) has been invigorated recently bythe Hubble Space Telescope (HST). Recent WD studies have been motivated by the new and independent cluster distance (Renzini et al. 1996), age (von Hippel et al. 1995; Richer et al. 1997), and stellar evolution (Koester & Reimers 1996) information that cluster WDs can provide. An important byproduct of these studies has been an estimate of the WD mass contribution in open and globular clusters. The cluster WD mass fraction is of importance for understanding the dynamical state and history of star clusters. It also bears an important connection to the WD mass fractions of the Galactic disk and halo. Current evidence indicates that the open clusters (e.g. von Hippel et al. 1996; Reid this volume) have essentially the same luminosity function (LF) as the solar neighborhood population. The case for the halo is less clear, despite the number of very good globular cluster LFs down to nearly 0.1 solar masses (e.g. Cool et al. 1996; Piotto, this volume), as the field halo LF is poorly known. For most clusters dynamical evolution should cause evaporation of the lowest mass members, biasing clusters to have flatter present-day mass functions (PDMFs) than the disk and halo field populations. Dynamical evolution should also allow cluster WDs to escape, though not in the same numbers as the much lower mass main sequence stars. The detailed connection between cluster PDMFs and the field IMF awaits elucidation from observations and the new combined N-body and stellar evolution models (Tout, this volume). Nevertheless, the WD mass fraction of clusters already provides an estimate for the WD mass fraction of the disk and halo field populations. A literature search to collect cluster WDs and a simple interpretive model follow. This is a work in progress and the full details of the literature search and the model will be published elsewhere.


1989 ◽  
Vol 114 ◽  
pp. 440-442
Author(s):  
M. Politano ◽  
R. F. Webbink

A zero-age cataclysmic binary (ZACB) we define as a binary system at the onset of interaction as a cataclysmic variable. We present here the results of calculations of the distributions of white dwarf masses and of orbital periods in ZACBs, due to binaries present in a stellar population which has undergone continuous, constant star formation for 1010 years.Distributions of ZACBs were calculated for binaries formed t years ago, for log t = 7.4 (the youngest age at which viable ZACBs can form) to log t = 10.0 (the assumed age of the Galactic disk), in intervals of log t = 0.1. These distributions were then integrated over time to obtain the ZACB distribution for a constant rate of star formation. To compute the individual distributions for a given t, we require the density of systems forming (number of pre-cataclysmics forming per unit volume of orbital parameter space), n£(t), and the rates at which the radii of the secondary and of its Roche lobe are changing in time, s (t) and L, s (t), respectively. In calculating nf(t), we assume that the distribution of the orbital parameters in primordial (ZAMS) binaries may be written as the product of the distribution of masses of ZAMS stars (Miller and Scalo 1979), the distribution of mass ratios in ZAMS binaries (cf. Popova, et al., 1982), and the distribution of orbital periods in ZAMS binaries (Abt 1983). In transforming the the orbital parameters from progenitor (ZAMS) to offspring (ZACB) binaries, we assume that all of the orbital energy deposited into the envelope during the common envelope phase leading to ZACB formation goes into unbinding that envelope. R.L, s (t) is determined from orbital angular momentum loss rates due to gravitational radiation (Landau and Lifshitz 1951) and magnetic braking (γ = 2 in Rappaport, Verbunt, and Joss 1983). We turn off magnetic braking if the secondary is completely convective.


2004 ◽  
Vol 423 (1) ◽  
pp. 183-188 ◽  
Author(s):  
Takahiro Kudoh ◽  
Shantanu Basu
Keyword(s):  

1988 ◽  
Vol 129 ◽  
pp. 255-256
Author(s):  
A. J. Kemball ◽  
P. J. Diamond ◽  
F. Mantovani

The apparent spot sizes of OH masers appear to be significantly broadened when seen through the inner galaxy or large extents of the galactic disk (Burke 1968). Bowers et al (1980) found evidence of small-scale structure (≲ 50 mas) in OH sources at distances of less than 5 kpc but this was characteristically absent in very distant sources (≳ 8kpc) at galactic longitudes 1 ≲ 40°. This result is typically explained in terms of interstellar scattering (ISS) by intervening diffuse HII regions.


Sign in / Sign up

Export Citation Format

Share Document