scholarly journals Anharmonic Vibrational Spectrum and Experimental Matrix Isolation Study of Thioformic Acid Conformers—Potential Candidates for Molecular Cloud and Solar System Observations?

2021 ◽  
Vol 917 (2) ◽  
pp. 68
Author(s):  
Antti Lignell ◽  
Irina Osadchuk ◽  
Markku Räsänen ◽  
Jan Lundell
2016 ◽  
Vol 113 (8) ◽  
pp. 2011-2016 ◽  
Author(s):  
Elishevah M. M. E. Van Kooten ◽  
Daniel Wielandt ◽  
Martin Schiller ◽  
Kazuhide Nagashima ◽  
Aurélien Thomen ◽  
...  

The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.


2020 ◽  
Vol 6 (42) ◽  
pp. eaay2724
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James R. Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

The Sun is 16O-enriched (Δ17O = −28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (−7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun’s Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10−6, exhibit a large inter-CAI range of Δ17O, from −40‰ to −5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10−5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, −24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000–20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.


2002 ◽  
Vol 124 (44) ◽  
pp. 13072-13079 ◽  
Author(s):  
Wolfram Sander ◽  
Michael Exner ◽  
Michael Winkler ◽  
Andreas Balster ◽  
Angelica Hjerpe ◽  
...  

2020 ◽  
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

2018 ◽  
Vol 115 (26) ◽  
pp. 6608-6613 ◽  
Author(s):  
Hope A. Ishii ◽  
John P. Bradley ◽  
Hans A. Bechtel ◽  
Donald E. Brownlee ◽  
Karen C. Bustillo ◽  
...  

The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (a-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicrona-silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalousa-silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some witha-silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.


1990 ◽  
Vol 123 ◽  
pp. 417-419
Author(s):  
Fred Hoyle

The word 'origin' is one of the most widely used in science. Yet it seems to me to be always used either improperly or ineffectively. Ineffective uses have a derivative quality about them. As an example, suppose we ask: What was the 'origin' of the magnetic field of the Sun? The best answer I suppose is that the magnetic field of the Sun was formed by the compression of a magnetic field that was present already in the gases of the molecular cloud in which the Sun and Solar System were formed some 4.5 X 109 years ago. But what then was the 'origin' of the field in the molecular cloud? It was present already in the gases from which our galaxy was formed, one might suggest. A further displacement then takes us to the manner of 'origin' of t he entire universe, so that no ultimate explanation has really been given. The problem has only been displaced along a chain until it passes into a mental fog through which some claim to see clearly but through which others, including myself, do not see at all.


Relics of the molecular cloud origins of the Solar System are found in the deuterated molecules of meteorites. The situation is summarized and discussed in conjunction with the isotopic anomalies of heavier elements, to obtain an overall view of the whole event.


2007 ◽  
Vol 6 (3) ◽  
pp. 223-228 ◽  
Author(s):  
W.M. Napier

AbstractThe Solar System passes within 5 pc of star-forming nebulae every ∼50–100 million years, a distance which can be bridged by protected micro-organisms ejected from the Earth by impacts. Such encounters disturb the Oort cloud, and induce episodes of bombardment of the Earth and the ejection of microbiota from its surface. Star-forming regions within the nebulae encountered may thus be seeded by significant numbers of microorganisms. Propagation of life throughout the Galactic habitable zone ‘goes critical’ provided that, in a typical molecular cloud, there are at least 1.1 habitable planets with impact environments similar to that of the Earth. Dissemination of microbiota proceeds most rapidly through the molecular ring of the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document