scholarly journals The Critical Dark Matter Halo Mass for Population III Star Formation: Dependence on Lyman–Werner Radiation, Baryon-dark Matter Streaming Velocity, and Redshift

2021 ◽  
Vol 917 (1) ◽  
pp. 40
Author(s):  
Mihir Kulkarni ◽  
Eli Visbal ◽  
Greg L. Bryan
2014 ◽  
Vol 441 (3) ◽  
pp. 2181-2187 ◽  
Author(s):  
S. Bovino ◽  
M. A. Latif ◽  
T. Grassi ◽  
D. R. G. Schleicher

2020 ◽  
Vol 499 (2) ◽  
pp. 2401-2415
Author(s):  
A C Trapp ◽  
Steven R Furlanetto

ABSTRACT Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations in the large-scale dark matter density field. In this work, we present a simple analytic model of cosmic variance in the high-redshift Universe (z ∼ 5–15). We assume that galaxies grow according to the evolution of the halo mass function, which we allow to vary with large-scale environment. Our model produces a reasonable match to the observed ultraviolet (UV) luminosity functions in this era by regulating star formation through stellar feedback and assuming that the UV luminosity function is dominated by recent star formation. We find that cosmic variance in the UV luminosity function is dominated by the variance in the underlying dark matter halo population, and not by differences in halo accretion or the specifics of our stellar feedback model. We also find that cosmic variance dominates over Poisson noise for future high-z surveys except for the brightest sources or at very high redshifts (z ≳ 12). We provide a linear approximation of cosmic variance for a variety of redshifts, magnitudes, and survey areas through the public python package galcv. Finally, we introduce a new method for incorporating priors on cosmic variance into estimates of the galaxy luminosity function and demonstrate that it significantly improves constraints on that important observable.


2018 ◽  
Vol 614 ◽  
pp. A39 ◽  
Author(s):  
A. S. Maniyar ◽  
M. Béthermin ◽  
G. Lagache

We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from ~0.8 at z = 0 to ~8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77−0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.


Author(s):  
Lorne Hofstetter

Elucidating the nature of dark matter in galactic systems remains one of the important unsolved mysteries of modern cosmology. As a thought experiment, we consider a galaxy model where the light radiating outward from stellar objects produces a gravitational effect larger than Einstein's theory of gravity predicts. Using computer simulations, we observe that this assumption allows the basic rotation curve profiles observed in both dwarf and late-type spiral galaxies to be recreated. It is important to highlight that a separate mass model describing the dark matter halo is not needed or used. This toy model may also lead to insights about the nature of dark energy. If the gravitational effects in the universe are currently dominated by radiated light as this toy model may suggest, the cosmic scale factor would be closely linked to the time-history and spatial distribution of star formation and death rates. An accelerating universe may simply be a manifestation of star death rates exceeding star formation rates in the current epoch.


2011 ◽  
Vol 7 (S279) ◽  
pp. 353-354
Author(s):  
Jirong Mao

AbstractLong gamma-ray bursts (GRBs) can be linked to the massive stars and their host galaxies are assumed to be the star-forming galaxies within small dark matter halos. We apply a galaxy evolution model, in which the star formation process inside the virialized dark matter halo at a given redshift is achieved. The star formation rates (SFRs) in the GRB host galaxies at different redshifts can be derived from our model. The related stellar masses, luminosities, and metalicities of these GRB host galaxies are estimated. We also calculate the X-ray and optical absorption of GRB afterglow emission. At higher redshift, the SFR of host galaxy is stronger, and the absorption in the X-ray and optical bands of GRB afterglow is stronger, when the dust and metal components are locally released, surrounding the GRB environment. These model predictions are compared with some observational data as well.


2013 ◽  
Vol 431 (1) ◽  
pp. 648-661 ◽  
Author(s):  
L. Wang ◽  
D. Farrah ◽  
S. J. Oliver ◽  
A. Amblard ◽  
M. Béthermin ◽  
...  

2012 ◽  
Vol 428 (3) ◽  
pp. 2109-2117 ◽  
Author(s):  
R. S. de Souza ◽  
B. Ciardi ◽  
U. Maio ◽  
A. Ferrara

Author(s):  
Haruka Kusakabe ◽  
Kazuhiro Shimasaku ◽  
Masami Ouchi ◽  
Kimihiko Nakajima ◽  
Ryosuke Goto ◽  
...  

2018 ◽  
Vol 14 (S344) ◽  
pp. 369-372
Author(s):  
Kelly A. Douglass ◽  
Michael S. Vogeley ◽  
Renyue Cen

AbstractWe study how the void environment affects the chemical evolution of galaxies by comparing the metallicity of dwarf galaxies in voids with dwarf galaxies in denser regions. Using spectroscopic observations from SDSS DR7, we estimate oxygen and nitrogen abundances of 889 void dwarf galaxies and 672 dwarf galaxies in denser regions. A substitute for the [OII] λ3727 doublet is developed, permitting oxygen abundance estimates of SDSS dwarf galaxies at all redshifts with the direct method. We find that void dwarf galaxies have about the same oxygen abundances and slightly lower N/O ratios than dwarf galaxies in denser environments. The lower N/O ratios seen in void dwarf galaxies may indicate both delayed star formation and a dependence of cosmic downsizing on the large-scale environment. Similar oxygen abundances in the two dwarf galaxy populations might be evidence of larger ratios of dark matter halo mass to stellar mass in voids.


2020 ◽  
Vol 634 ◽  
pp. A135 ◽  
Author(s):  
G. Girelli ◽  
L. Pozzetti ◽  
M. Bolzonella ◽  
C. Giocoli ◽  
F. Marulli ◽  
...  

Aims. Understanding the link between the galaxy properties and the dark matter halos they reside in and their coevolution is a powerful tool for constraining the processes related to galaxy formation. In particular, the stellar-to-halo mass relation (SHMR) and its evolution throughout the history of the Universe provides insights on galaxy formation models and allows us to assign galaxy masses to halos in N-body dark matter simulations. To address these questions, we determine the SHMR throughout the entire cosmic history from z ∼ 4 to the present. Methods. We used a statistical approach to link the observed galaxy stellar mass functions on the COSMOS field to dark matter halo mass functions up to z ∼ 4 from the ΛCDM DUSTGRAIN-pathfinder simulation, which is complete for Mh >  1012.5 M⊙, and extended this to lower masses with a theoretical parameterization. We propose an empirical model to describe the evolution of the SHMR as a function of redshift (either in the presence or absence of a scatter in stellar mass at fixed halo mass), and compare the results with several literature works and semianalytic models of galaxy formation. We also tested the reliability of our results by comparing them to observed galaxy stellar mass functions and to clustering measurements. Results. We derive the SHMR from z = 0 to z = 4, and model its empirical evolution with redshift. We find that M*/Mh is always lower than ∼0.05 and depends both on redshift and halo mass, with a bell shape that peaks at Mh ∼ 1012 M⊙. Assuming a constant cosmic baryon fraction, we calculate the star-formation efficiency of galaxies and find that it is generally low; its peak increases with cosmic time from ∼30% at z ∼ 4 to ∼35% at z ∼ 0. Moreover, the star formation efficiency increases for increasing redshifts at masses higher than the peak of the SHMR, while the trend is reversed for masses lower than the peak. This indicates that massive galaxies (i.e., galaxies hosted at halo masses higher than the SHMR peak) formed with a higher efficiency at higher redshifts (i.e., downsizing effect) and vice versa for low-mass halos. We find a large scatter in results from semianalytic models, with a difference of up to a factor ∼8 compared to our results, and an opposite evolutionary trend at high halo masses. By comparing our results with those in the literature, we find that while at z ∼ 0 all results agree well (within a factor of ∼3), at z >  0 many differences emerge. This suggests that observational and theoretical work still needs to be done. Our results agree well (within ∼10%) with observed stellar mass functions (out to z = 4) and observed clustering of massive galaxies (M* >  1011 M⊙ from z ∼ 0.5 to z ∼ 1.1) in the two-halo regime.


Sign in / Sign up

Export Citation Format

Share Document