scholarly journals Coronal Hole Detection and Open Magnetic Flux

2021 ◽  
Vol 918 (1) ◽  
pp. 21
Author(s):  
Jon A. Linker ◽  
Stephan G. Heinemann ◽  
Manuela Temmer ◽  
Mathew J. Owens ◽  
Ronald M. Caplan ◽  
...  
2009 ◽  
Vol 5 (S264) ◽  
pp. 210-212 ◽  
Author(s):  
Alexei A. Pevtsov ◽  
Valentyna I. Abramenko

AbstractWe present the observations of coronal hole that has originated at the polar hole in one hemisphere, extended to equatorial region, got disconnected and transported across the equator to polar region of opposite hemisphere.


2015 ◽  
Vol 383 ◽  
pp. 220-225 ◽  
Author(s):  
G.V. Kurlyandskaya ◽  
A.A. Chlenova ◽  
E. Fernández ◽  
K.J. Lodewijk

2007 ◽  
Vol 25 (8) ◽  
pp. 1865-1876 ◽  
Author(s):  
A. D. DeJong ◽  
X. Cai ◽  
R. C. Clauer ◽  
J. F. Spann

Abstract. Using Polar UVI LBHl and IMAGE FUV WIC data, we have compared the auroral signatures and polar cap open flux for isolated substorms, sawteeth oscillations, and steady magnetospheric convection (SMC) events. First, a case study of each event type is performed, comparing auroral signatures and open magnetic fluxes to one another. The latitude location of the auroral oval is similar during isolated substorms and SMC events. The auroral intensity during SMC events is similar to that observed during the expansion phase of an isolated substorm. Examination of an individual sawtooth shows that the auroral intensity is much greater than the SMC or isolated substorm events and the auroral oval is displaced equatorward making a larger polar cap. The temporal variations observed during the individual sawtooth are similar to that observed during the isolated substorm, and while the change in polar cap flux measured during the sawtooth is larger, the percent change in flux is similar to that measured during the isolated substorm. These results are confirmed by a statistical analysis of events within these three classes. The results show that the auroral oval measured during individual sawteeth contains a polar cap with, on average, 150% more magnetic flux than the oval measured during isolated substorms or during SMC events. However, both isolated substorms and sawteeth show a 30% decrease in polar cap magnetic flux during the dipolarization (expansion) phase.


Author(s):  
R. Jarolim ◽  
A. M. Veronig ◽  
S. Hofmeister ◽  
S. G. Heinemann ◽  
M. Temmer ◽  
...  

2013 ◽  
Vol 118 (6) ◽  
pp. 2958-2969 ◽  
Author(s):  
L. B. N. Clausen ◽  
S. E. Milan ◽  
J. B. H. Baker ◽  
J. M. Ruohoniemi ◽  
K.-H. Glassmeier ◽  
...  

2020 ◽  
Vol 638 ◽  
pp. A68 ◽  
Author(s):  
S. G. Heinemann ◽  
V. Jerčić ◽  
M. Temmer ◽  
S. J. Hofmeister ◽  
M. Dumbović ◽  
...  

Context. Understanding the evolution of coronal holes is especially important when studying the high-speed solar wind streams that emanate from them. Slow- and high-speed stream interaction regions may deliver large amounts of energy into the Earth’s magnetosphere-ionosphere system, cause geomagnetic storms, and shape interplanetary space. Aims. By statistically investigating the long-term evolution of well-observed coronal holes we aim to reveal processes that drive the observed changes in the coronal hole parameters. By analyzing 16 long-living coronal holes observed by the Solar Dynamic Observatory, we focus on coronal, morphological, and underlying photospheric magnetic field characteristics, and investigate the evolution of the associated high-speed streams. Methods. We use the Collection of Analysis Tools for Coronal Holes to extract and analyze coronal holes using 193 Å EUV observations taken by the Atmospheric Imaging Assembly as well as line–of–sight magnetograms observed by the Helioseismic and Magnetic Imager. We derive changes in the coronal hole properties and look for correlations with coronal hole evolution. Further, we analyze the properties of the high–speed stream signatures near 1AU from OMNI data by manually extracting the peak bulk velocity of the solar wind plasma. Results. We find that the area evolution of coronal holes shows a general trend of growing to a maximum followed by a decay. We did not find any correlation between the area evolution and the evolution of the signed magnetic flux or signed magnetic flux density enclosed in the projected coronal hole area. From this we conclude that the magnetic flux within the extracted coronal hole boundaries is not the main cause for its area evolution. We derive coronal hole area change rates (growth and decay) of (14.2 ± 15.0)×108 km2 per day showing a reasonable anti-correlation (ccPearson = −0.48) to the solar activity, approximated by the sunspot number. The change rates of the signed mean magnetic flux density (27.3 ± 32.2 mG day−1) and the signed magnetic flux (30.3 ± 31.5 1018 Mx day−1) were also found to be dependent on solar activity (ccPearson = 0.50 and ccPearson = 0.69 respectively) rather than on the individual coronal hole evolutions. Further we find that the relation between coronal hole area and high-speed stream peak velocity is valid for each coronal hole over its evolution, but we see significant variations in the slopes of the regression lines.


2019 ◽  
Vol 629 ◽  
pp. A22 ◽  
Author(s):  
Stefan J. Hofmeister ◽  
Dominik Utz ◽  
Stephan G. Heinemann ◽  
Astrid Veronig ◽  
Manuela Temmer

In this study, we investigate in detail the photospheric magnetic structure of 98 coronal holes using line-of-sight magnetograms of SDO/HMI, and for a subset of 42 coronal holes using HINODE/SOT G-band filtergrams. We divided the magnetic field maps into magnetic elements and quiet coronal hole regions by applying a threshold at ±25 G. We find that the number of magnetic bright points in magnetic elements is well correlated with the area of the magnetic elements (cc = 0.83 ± 0.01). Further, the magnetic flux of the individual magnetic elements inside coronal holes is related to their area by a power law with an exponent of 1.261 ± 0.004 (cc = 0.984 ± 0.001). Relating the magnetic elements to the overall structure of coronal holes, we find that on average (69 ± 8)% of the overall unbalanced magnetic flux of the coronal holes arises from long-lived magnetic elements with lifetimes > 40 h. About (22 ± 4)% of the unbalanced magnetic flux arises from a very weak background magnetic field in the quiet coronal hole regions with a mean magnetic field density of about 0.2−1.2 G. This background magnetic field is correlated to the flux of the magnetic elements with lifetimes of > 40 h (cc = 0.88 ± 0.02). The remaining flux arises from magnetic elements with lifetimes < 40 h. By relating the properties of the magnetic elements to the overall properties of the coronal holes, we find that the unbalanced magnetic flux of the coronal holes is completely determined by the total area that the long-lived magnetic elements cover (cc = 0.994 ± 0.001).


2009 ◽  
Vol 505 (3) ◽  
pp. 1237-1244 ◽  
Author(s):  
X. Wang ◽  
B. Klecker ◽  
P. Wurz

Sign in / Sign up

Export Citation Format

Share Document