scholarly journals Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption

2021 ◽  
Vol 918 (1) ◽  
pp. 38
Author(s):  
Daikichi Seki ◽  
Kenichi Otsuji ◽  
Hiroaki Isobe ◽  
Giulio Del Zanna ◽  
Takako T. Ishii ◽  
...  
2020 ◽  
Vol 500 (1) ◽  
pp. 684-695
Author(s):  
Aabha Monga ◽  
Rahul Sharma ◽  
Jiajia Liu ◽  
Consuelo Cid ◽  
Wahab Uddin ◽  
...  

ABSTRACT The partial eruption of a filament channel with bifurcated substructures is investigated using data sets obtained from both ground-based and space-borne facilities. Small-scale flux reconnection/cancellation events in the region triggered the pile-up of ambient magnetic field, observed as bright extreme ultraviolet (EUV) loops in close proximity to the filament channel. This led to the formation of a V-shaped cusp structure at the site of interaction between the coalesced EUV loops and the filament channel, with the presence of distinct plasmoid structures and associated bidirectional flows. Analysis of imaging data from SDO/AIA further suggests vertical splitting of the filament structure into two substructures. The perturbed upper branch of the filament structure rose up and erupted with the onset of an energetic GOES M1.4 flare at 04:30 ut on 2015 January 28. The estimated twist number and squashing factor obtained from non-linear force free-field extrapolation of the magnetic field data support the vertical split in the filament structure with high twist in the upper substructure. The loss in equilibrium of the upper branch due to torus instability implies that this is a potential triggering mechanism for the observed partial eruption.


2017 ◽  
Vol 843 (2) ◽  
pp. L24 ◽  
Author(s):  
Daikichi Seki ◽  
Kenichi Otsuji ◽  
Hiroaki Isobe ◽  
Takako T. Ishii ◽  
Takahito Sakaue ◽  
...  

Several recent investigations in geophysics and astrophysics have involved a consideration of the hydrodynamics of a fluid which is a good electrical conductor. In this paper one of the problems which seem likely to arise in such investigations is discussed. The fluid is assumed to be incompressible and in homogeneous turbulent motion, and externally imposed electric and magnetic fields are assumed to be absent. The equations governing the interaction of the electromagnetic field and the turbulent motion are set up with the same assumptions as are used to obtain the Maxwell and current flow equations for a metallic conductor. It is shown that the equation for the magnetic field is identical in form with that for the vorticity in a non-conducting fluid; immediate deductions are that lines of magnetic force move with the fluid when the conductivity is infinite, and that the small-scale components of the turbulence have the more powerful effect on the magnetic field. The first question considered is the stability of a purely hydrodynamical system to small disturbing magnetic fields, and it is shown that the magnetic energy of the disturbance will increase provided the conductivity is greater than a critical value determined by the viscosity of the fluid. The rate of growth of magnetic energy is approximately exponential, with a doubling time which can be simply related to the properties of the turbulence. General mechanical considerations suggest that a steady state is reached when the magnetic field has as much energy as is contained in the small-scale components of the turbulence. Estimates of this amount of energy and of the region of the spectrum in which it will lie are given in terms of observable properties of the turbulence.


2019 ◽  
Vol 42 ◽  
Author(s):  
William Buckner ◽  
Luke Glowacki

Abstract De Dreu and Gross predict that attackers will have more difficulty winning conflicts than defenders. As their analysis is presumed to capture the dynamics of decentralized conflict, we consider how their framework compares with ethnographic evidence from small-scale societies, as well as chimpanzee patterns of intergroup conflict. In these contexts, attackers have significantly more success in conflict than predicted by De Dreu and Gross's model. We discuss the possible reasons for this disparity.


1994 ◽  
Vol 144 ◽  
pp. 127-129
Author(s):  
S. Dinulescu ◽  
G. Maris

AbstractOccurrence of CMEs as a result of solar filament disappearance is discussed over the cycle 22.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Author(s):  
R. Gronsky

It is now well established that the phase transformation behavior of YBa2Cu3O6+δ is significantly influenced by matrix strain effects, as evidenced by the formation of accommodation twins, the occurrence of diffuse scattering in diffraction patterns, the appearance of tweed contrast in electron micrographs, and the generation of displacive modulation superstructures, all of which have been successfully modeled via simple Monte Carlo simulations. The model is based upon a static lattice formulation with two types of excitations, one of which is a change in oxygen occupancy, and the other a small displacement of both the copper and oxygen sublattices. Results of these simulations show that a displacive superstructure forms very rapidly in a morphology of finely textured domains, followed by domain growth and a more sharply defined modulation wavelength, ultimately evolving into a strong <110> tweed with 5 nm to 7 nm period. What is new about these findings is the revelation that both the small-scale deformation superstructures and coarser tweed morphologies can result from displacive modulations in ordered YBa2Cu3O6+δ and need not be restricted to domain coarsening of the disordered phase. Figures 1 and 2 show a representative image and diffraction pattern for fully-ordered (δ = 1) YBa2Cu3O6+δ associated with a long-period <110> modulation.


Sign in / Sign up

Export Citation Format

Share Document