Superstructures and ordering phenomena in ceramic superconductors

Author(s):  
R. Gronsky

It is now well established that the phase transformation behavior of YBa2Cu3O6+δ is significantly influenced by matrix strain effects, as evidenced by the formation of accommodation twins, the occurrence of diffuse scattering in diffraction patterns, the appearance of tweed contrast in electron micrographs, and the generation of displacive modulation superstructures, all of which have been successfully modeled via simple Monte Carlo simulations. The model is based upon a static lattice formulation with two types of excitations, one of which is a change in oxygen occupancy, and the other a small displacement of both the copper and oxygen sublattices. Results of these simulations show that a displacive superstructure forms very rapidly in a morphology of finely textured domains, followed by domain growth and a more sharply defined modulation wavelength, ultimately evolving into a strong <110> tweed with 5 nm to 7 nm period. What is new about these findings is the revelation that both the small-scale deformation superstructures and coarser tweed morphologies can result from displacive modulations in ordered YBa2Cu3O6+δ and need not be restricted to domain coarsening of the disordered phase. Figures 1 and 2 show a representative image and diffraction pattern for fully-ordered (δ = 1) YBa2Cu3O6+δ associated with a long-period <110> modulation.

2018 ◽  
Vol 6 (2) ◽  
pp. T271-T281 ◽  
Author(s):  
Shuai Yin ◽  
Airong Li ◽  
Qiang Jia ◽  
Wenlong Ding ◽  
Yanxia Li

In situ stress has an important influence on coal reservoir permeability, fracturing, and production capacity. In this paper, fracturing testing, imaging logging, and 3D finite-element simulation were used to study the current in situ stress field of a coal reservoir with a high coal rank. The results indicated that the horizontal stress field within the coal reservoir is controlled by the burial depth, folding, and faulting. The [Formula: see text] and [Formula: see text] values within the coal reservoir are 1–2.5 MPa higher than those within the clastic rocks of the roof and floor. The [Formula: see text]–[Formula: see text] values of the coal reservoir are generally between 2 and 6 MPa and increase with burial depth. When the [Formula: see text]–[Formula: see text] value is less than 5 MPa, production from a single well is high, but when the [Formula: see text]–[Formula: see text] value is greater than 5 MPa, production from a single well is low. In addition, the accumulated water production is high when the [Formula: see text]–[Formula: see text] value is greater than 5 MPa, demonstrating that a higher [Formula: see text]–[Formula: see text] value allows the hydraulic fractures to more easily penetrate the roof and floor of the coal seam. In coal-bed methane development regions with high [Formula: see text]–[Formula: see text] values, repeated fracturing using the small-scale plug removal method — which is a fracturing method that uses a small volume of liquid, small displacement, and low sand concentration — is suggested.


2020 ◽  
Author(s):  
Hagen Deckert ◽  
Steffen Abe ◽  
Wolfgang Bauer

&lt;p&gt;In the course of hydrocarbon or geothermal exploration the characterisation of fault zone architectures is of interest for fluid flow modelling and geomechanical studies. Seismic data normally offer the best information for the identification of fault zone geometries in sedimentary basins. However, the internal structure or the damage zone of a fault can be hardly resolved with seismic data as displacements along single fault strands or fractures are by far too small. Thus, it is not possible to directly map small scale faults with seismic methods, though these structures might significantly influence fluid flow. We try to examine the architecture of extensional fault zones in carbonate rocks at subseismic scales by using discrete element method (DEM) techniques to numerically simulate the evolution of fault zones including their associated damage zones.&lt;/p&gt;&lt;p&gt;As a case study we have analysed the geometry, displacement and fault width of normal faults in fine grained jurassic limestones in a quarry in Franconia, Germany. The quarry shows a rather simple set of conjugated 60deg dipping normal faults. Displacement is rather small and varies between c. 5cm up to c. 2m, some faults show almost no offset. The fault thickness varies between 2cm and c. 1m. A closer investigation of the fault geometries reveals, next to planar parts, sometimes complex fault zone structures including restraining and releasing bends, multiple fault strands as well as lenses and associated riedel shears. Analysis of high resolution photogrammetric data revealed a high number of small scale fractures between neighbouring discrete fault surfaces which are interpreted as highly fractured damage zones. Some faults with rather small displacement suggest that the overall inclination of the fault is a result of small subvertical sections which are connected in a staircase like appearance.&amp;#160;&lt;/p&gt;&lt;p&gt;The DEM models simulate normal faulting in a layered marl-limestone sequence driven by the displacement of an underlying basement fault. Different layer geometries and effective vertical stresses in the range of 15-45 MPa, equivalent to an overburden thickness of c. 1000-3000m, have been used in the models. The stress range covers the maximum burial depth of the carbonates, which is assumed to be c. 1500m. Material properties used in the DEM were calibrated based on laboratory data, i.e. results of triaxial deformation tests on the studied limestones.&lt;/p&gt;&lt;p&gt;Results of the models show fault geometries which resemble those observed in the studied outcrop. In particularly under low stress, small offsets and with strongly decoupled layers we observe steeply dipping faults (&gt;70deg) which also show staircase structures composed of sub-vertical fractures within each of the layers and horizontal offsets along the layer interfaces. We also observe the development of multiple fault strands and associated damage zones.&amp;#160;&lt;/p&gt;&lt;p&gt;Our study shows that the DEM models are capable to reproduce observed fault geometries and damage zones. The results help to understand fault zone architectures and depict highly fractured areas in a sub-seismic scale.&lt;/p&gt;


1993 ◽  
Vol 8 (6) ◽  
pp. 1373-1378 ◽  
Author(s):  
A. Catana ◽  
J-P. Locquet

Dy2O3 layers have been grown on SrTiO3 by molecular beam epitaxy. X-ray and electron diffraction patterns clearly show that Dy2O3 grows epitaxially on SrTiO3 with {100} planes parallel to the substrate surface. Transmission electron microscopy reveals that the Dy2O3 film breaks up into small domains (10–40 nm). This leads to the formation of terraces which limits the structural perfection of thin overgrown DyBa2Cu3O7 by introducing steps and small misorientations (within 3°). The resulting surface corrugation does not preclude the growth of epitaxial c-axis DyBa2Cu3O7 films with a Tc0 of 86 K. Crystallographic analysis and image calculations show that the domain growth of Dy2O3 is associated with the formation of 90° rotation twins.


2019 ◽  
Vol 42 ◽  
Author(s):  
William Buckner ◽  
Luke Glowacki

Abstract De Dreu and Gross predict that attackers will have more difficulty winning conflicts than defenders. As their analysis is presumed to capture the dynamics of decentralized conflict, we consider how their framework compares with ethnographic evidence from small-scale societies, as well as chimpanzee patterns of intergroup conflict. In these contexts, attackers have significantly more success in conflict than predicted by De Dreu and Gross's model. We discuss the possible reasons for this disparity.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


Author(s):  
Glen B. Haydon

Analysis of light optical diffraction patterns produced by electron micrographs can easily lead to much nonsense. Such diffraction patterns are referred to as optical transforms and are compared with transforms produced by a variety of mathematical manipulations. In the use of light optical diffraction patterns to study periodicities in macromolecular ultrastructures, a number of potential pitfalls have been rediscovered. The limitations apply to the formation of the electron micrograph as well as its analysis.(1) The high resolution electron micrograph is itself a complex diffraction pattern resulting from the specimen, its stain, and its supporting substrate. Cowley and Moodie (Proc. Phys. Soc. B, LXX 497, 1957) demonstrated changing image patterns with changes in focus. Similar defocus images have been subjected to further light optical diffraction analysis.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Author(s):  
William Krakow

An electronic device has been constructed which manipulates the primary beam in the conventional transmission microscope to illuminate a specimen under a variety of virtual condenser aperture conditions. The device uses the existing tilt coils of the microscope, and modulates the D.C. signals to both x and y tilt directions simultaneously with various waveforms to produce Lissajous figures in the back-focal plane of the objective lens. Electron diffraction patterns can be recorded which reflect the manner in which the direct beam is tilted during exposure of a micrograph. The device has been utilized mainly for the hollow cone imaging mode where the device provides a microscope transfer function without zeros in all spatial directions and has produced high resolution images which are also free from the effect of chromatic aberration. A standard second condenser aperture is employed and the width of the cone annulus is readily controlled by defocusing the second condenser lens.


Sign in / Sign up

Export Citation Format

Share Document