oxygen sublattices
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Vol 64 (1) ◽  
pp. 33
Author(s):  
А.А. Валеева ◽  
А.И. Гусев

Possible models of the arrangement of hydrogen atoms at the sites of the cubic lattice of titanium oxyhydride TiOyHp with vacancies in the metallic and nonmetallic sublattices are considered. It was found that titanium oxyhydride retains the B1 type crystal lattice of the initial cubic titanium monoxide TiOy and contains structural vacancies in the metal and oxygen sublattices. Comparison of the found analytical expressions for the intensity of diffraction reflections with experimental X-ray and neutron diffraction data showed that interstitial H atoms in oxyhydrides occupy vacant octahedral positions 4(b) of the oxygen sublattice. No displacement of H atoms in tetrahedral positions 8(c) is observed. A disorder-order phase transition channel associated with the formation of an ordered monoclinic titanium oxyhydride of the Ti5O5 type was found. The distribution functions of Ti, O, and H atoms in the partially ordered monoclinic oxyhydride Ti5.33O5.12H0.74 (Ti0.89O0.85H0.12) with a Ti5O5-type structure are calculated for the first time, and the concentrations of these atoms at the positions of its lattice were found.


2018 ◽  
Vol 60 (1) ◽  
pp. 80
Author(s):  
Т.И. Арбузова ◽  
С.В. Наумов ◽  
С.В. Телегин

AbstractThe effect of structural defects in cobalt and oxygen sublattices with the constant average oxidation level 3+ of all cobalt ions on the magnetic properties of the EuBaCo_1.90O_5.36 single crystal has been studied. The magnetic properties of the single crystal and the polycrystalline sample of the corresponding composition are compared in the range T = 200–650 K. The results show that the cobalt-deficient EuBaCo_2– x O_5.5–δ samples demonstrate a three-dimensional XY ferromagnetic ordering of magnetic sublattices. The values of the effective magnetic moment at T > 480 K indicate the existence of the IS and HS states of Co^3+ ions. The large difference of values of μ_eff of the EuBaCo_1.90O_5.36 single crystal and polycrystal can be due to that the magnetic ion spins lie in plane ab. The magnetic field directed along plane ab substantially influences the magnetic ordering at T < 300 K.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
S. V. Telegin ◽  
A. Yu. Zuev ◽  
S. V. Naumov ◽  
E. I. Patrakov ◽  
D. S. Tsvetkov

The cobalt deficient double perovskites EuBaCo2−xO6−δ with x=0–0.1 were obtained both as powders and as single crystal. Formation of cobalt vacancies in their crystal lattice was shown to be accompanied by the formation of oxygen ones. Chemical lattice strain caused by this cooperative disordering of cobalt and oxygen sublattices was found to be isotropic contrary to that caused by the formation of oxygen vacancies only. Cobalt deficiency was also shown to lead to lowering overall conductivity and Seebeck coefficient of EuBaCo2−xO6−δ double perovskites as a result of simultaneous decrease of charge carriers’ concentration and their mobility as well as number of sites available for electrons and holes transfer. Strong anisotropy of the overall conductivity of the single crystal double perovskites EuBaCo2−xO6−δ was found and explained on the basis of preferential location of oxygen vacancies in the rare-earth-oxygen- (REO-) planes.


2016 ◽  
Vol 49 (6) ◽  
pp. 1922-1940 ◽  
Author(s):  
Shyh-Lung Hwang ◽  
Pouyan Shen ◽  
Hao-Tsu Chu ◽  
Tzen-Fu Yui

In many inclusion–host systems with similar oxygen packing schemes, the optimum crystallographic orientation relationship (COR) between the inclusion and the host is mostly determined by matching the similar oxygen sublattices of the two structures. In contrast, the prediction of the optimum COR or even just the rationalization of the observed COR(s) between an inclusion and host with incompatible oxygen sublattices, like rutile–garnet, is not straightforward. The related documentation for such cases is therefore limited. Given the abundant crystallographic data for the rutile–garnet system acquired by transmission electron microscopy and electron backscatter diffraction methods recently, this problem can now be examined in detail for the critical structural factors dictating the selection of optimum COR in such a structurally complicated system. On the basis of the unconstrained three-dimensional lattice point match and structural polyhedron match calculated for the observed CORs, it becomes clear that the prerequisite of optimum COR for rutile (rt) in garnet (grt) is to have most of their octahedra similarly oriented/inclined in space by aligning 〈103〉rtand 〈111〉grtfor needle extension growth. Further rotation along the 〈103〉rt//〈111〉grtdirection then leads to the energetically most favorable COR-2 variant with a good lattice point match defined by the coincidence site lattice (CSL) and a good topotaxial match of the constituent polyhedra at the CSL points, leaving unfavorable COR-1′ in the forbidden zones. This understanding sheds light not only on hierarchical energetics for the selection of inclusion variants in a complicated inclusion–host system, but also on yet-to-be-explored [UVW]-specific CORs and hetero-tilt boundaries for composite materials in general.


2001 ◽  
Vol 194-199 ◽  
pp. 1045-1050
Author(s):  
V.B. Vykhodets ◽  
Tatiana Eugenievna Kurennykh ◽  
B.V. Slobodin ◽  
E.E. Soldatova ◽  
Anatoly Yakovlevich Fishman

2000 ◽  
Vol 659 ◽  
Author(s):  
Makhmud Kalanov ◽  
Elvira M. Ibragimova

ABSTRACTResistive superconducting (SC) transition, current-voltage characteristics, and X-ray diffraction (XRD) of YBaCuO ceramics have been studied after exposure to 18 MeV proton beam at 300 K. In the interval of 1013 −5×1014 cm−2 the irradiation induced oxygenation of weak intergrain contacts and grain alignment, anisotropy and broadening of SC-transition measured along and across the proton beam, and residual magnetization were found. The proton induced anisotropic texture is responsible for the critical current increase at 77 K and the resistivity decrease at 90–200 K. In a higher dose interval of 1013 −1015 cm−2 the SC-transition parameters degrade and the resistivity increases, depending on a texture degree, weak intergrain links become deoxygenated and no texture occurs. The magnetization (pinning) and the anisotropy of SC-transition can be due to localization of charges at the proton induced defects (mostly in oxygen sublattices).


Author(s):  
R. Gronsky

It is now well established that the phase transformation behavior of YBa2Cu3O6+δ is significantly influenced by matrix strain effects, as evidenced by the formation of accommodation twins, the occurrence of diffuse scattering in diffraction patterns, the appearance of tweed contrast in electron micrographs, and the generation of displacive modulation superstructures, all of which have been successfully modeled via simple Monte Carlo simulations. The model is based upon a static lattice formulation with two types of excitations, one of which is a change in oxygen occupancy, and the other a small displacement of both the copper and oxygen sublattices. Results of these simulations show that a displacive superstructure forms very rapidly in a morphology of finely textured domains, followed by domain growth and a more sharply defined modulation wavelength, ultimately evolving into a strong <110> tweed with 5 nm to 7 nm period. What is new about these findings is the revelation that both the small-scale deformation superstructures and coarser tweed morphologies can result from displacive modulations in ordered YBa2Cu3O6+δ and need not be restricted to domain coarsening of the disordered phase. Figures 1 and 2 show a representative image and diffraction pattern for fully-ordered (δ = 1) YBa2Cu3O6+δ associated with a long-period <110> modulation.


1994 ◽  
Vol 9 (6) ◽  
pp. 1376-1383 ◽  
Author(s):  
Beesabathina D. Prasad ◽  
L. Salamanca-Riba ◽  
S.N. Mao ◽  
X.X. Xi ◽  
T. Venkatesan ◽  
...  

The growth morphology and interface structure of Nd1.85Ce0.15CuO4−y (NCCO) films grown by pulsed laser deposition on two different types of substrates, “perovskite” LaAlO3 (LAO) and SrTiO3 (STO) and “fluorite” Y2O3-stabilized ZrO2 (YSZ), were studied using cross-sectional electron microscopy. Structurally, the NCCO films are different when grown on the two types of substrates in three aspects: (i) epitaxy, (ii) substrate-film intermixing, and (iii) substrate-film interface roughness. In general, films deposited on “fluorite” substrates showed better superconducting properties than the films grown on “perovskite” substrates, especially for thinner films. Lattice mismatch considerations are not sufficient to explain the observed differences since films grown on the YSZ substrate showed sharp substrate-film interface in spite of their large lattice misfit. The atomic arrangements at the interface were analyzed in terms of electrostatic energy (charge balance) and matching of the oxygen sublattices in order to account for the experimental results.


Sign in / Sign up

Export Citation Format

Share Document