scholarly journals A Catalog of Host Galaxies for WISE-selected AGN: Connecting Host Properties with Nuclear Activity and Identifying Contaminants

2021 ◽  
Vol 922 (2) ◽  
pp. 179
Author(s):  
R. Scott Barrows ◽  
Julia M. Comerford ◽  
Daniel Stern ◽  
Roberto J. Assef

Abstract We present a catalog of physical properties for galaxies hosting active galactic nuclei (AGN) detected by the Wide-field Infrared Survey Explorer (WISE). By fitting broadband spectral energy distributions of sources in the WISE AGN Catalog with empirical galaxy and AGN templates, we derive photometric redshifts, AGN bolometric luminosities, measures of AGN obscuration, host galaxy stellar masses, and host galaxy star formation rates (SFRs) for 695,273 WISE AGN. The wide-area nature of this catalog significantly augments the known number of obscured AGN out to redshifts z ∼ 3 and will be useful for studies focused on AGN or their host galaxy physical properties. We first show that the most likely non-AGN contaminants are galaxies at redshifts z = 0.2–0.3, with relatively blue W1–W2 colors, and with high specific SFRs for which the dust continuum emission is elevated in the W2 filter. Toward increasingly lower redshifts, WISE AGN host galaxies have systematically lower specific SFRs relative to those of normal star-forming galaxies, likely due to decreased cold gas fractions and the time delay between global star formation and AGN triggering. Finally, WISE AGN obscuration is not strongly correlated with AGN bolometric luminosity but shows a significant negative correlation with the Eddington ratio. This result is consistent with a version of the receding torus model in which the obscuring material is located within the supermassive black hole gravitational sphere of influence and the dust inner radius increases due to radiation pressure.

2020 ◽  
Vol 644 ◽  
pp. A82
Author(s):  
O. Miettinen

Context. Infrared dark clouds (IRDCs) can be the birth sites of high-mass stars, and hence determining the physical properties of dense cores in IRDCs is useful to constrain the initial conditions and theoretical models of high-mass star formation. Aims. We aim to determine the physical properties of dense cores in the filamentary Seahorse IRDC G304.74+01.32. Methods. We used data from the Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), and Herschel in conjuction with our previous 350 and 870 μm observations with the Submillimetre APEX Bolometer Camera (SABOCA) and Large APEX BOlometer CAmera, and constructed the far-IR to submillimetre spectral energy distributions (SEDs) of the cores. The SEDs were fitted using single or two-temperature modified blackbody emission curves to derive the dust temperatures, masses, and luminosities of the cores. Results. For the 12 analysed cores, which include two IR dark cores (no WISE counterpart), nine IR bright cores, and one H II region, the mean dust temperature of the cold (warm) component, the mass, luminosity, H2 number density, and surface density were derived to be 13.3 ± 1.4 K (47.0 ± 5.0 K), 113 ± 29 M⊙, 192 ± 94 L⊙, (4.3 ± 1.2) × 105 cm−3, and 0.77 ± 0.19 g cm−3, respectively. The H II region IRAS 13039-6108a was found to be the most luminous source in our sample ((1.1 ± 0.4) × 103 L⊙). All the cores were found to be gravitationally bound (i.e. the virial parameter αvir < 2). Two out of the nine analysed IR bright cores (22%) were found to follow an accretion luminosity track under the assumptions that the mass accretion rate is 10−5 M⊙ yr−1, the stellar mass is 10% of the parent core mass, and the radius of the central star is 5 R⊙. Most of the remaing ten cores were found to lie within 1 dex below this accretion luminosity track. Seven out of 12 of the analysed cores (58%) were found to lie above the mass-radius thresholds of high-mass star formation proposed in the literature. The surface densities of Σ > 0.4 g cm−3 derived for these seven cores also exceed the corresponding threshold for high-mass star formation. Five of the analysed cores (42%) show evidence of fragmentation into two components in the SABOCA 350 μm image. Conclusions. In addition to the H II region source IRAS 13039-6108a, some of the other cores in Seahorse also appear to be capable of giving birth to high-mass stars. The 22 μm dark core SMM 9 is likely to be the youngest source in our sample that has the potential to form a high-mass star (96 ± 23 M⊙ within a radius of ~0.1 pc). The dense core population in the Seahorse IRDC has comparable average properties to the cores in the well-studied Snake IRDC G11.11-0.12 (e.g. Tdust and L agree within a factor of ~1.8); furthermore, the Seahorse, which lies ~60 pc above the Galactic plane, appears to be a smaller (e.g. three times shorter in projection, ~100 times less massive) version of the Snake. The Seahorse core fragmentation mechanisms appear to be heterogenous, including cases of both thermal and non-thermal Jeans instability. High-resolution follow-up studies are required to address the fragmented cores’ genuine potential of forming high-mass stars.


2020 ◽  
Vol 498 (2) ◽  
pp. 2323-2338
Author(s):  
Thomas M Jackson ◽  
D J Rosario ◽  
D M Alexander ◽  
J Scholtz ◽  
Stuart McAlpine ◽  
...  

ABSTRACT In this paper, we present data from 72 low-redshift, hard X-ray selected active galactic nucleus (AGN) taken from the Swift–BAT 58 month catalogue. We utilize spectral energy distribution fitting to the optical to infrared photometry in order to estimate host galaxy properties. We compare this observational sample to a volume- and flux-matched sample of AGN from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations in order to verify how accurately the simulations can reproduce observed AGN host galaxy properties. After correcting for the known +0.2 dex offset in the SFRs between EAGLE and previous observations, we find agreement in the star formation rate (SFR) and X-ray luminosity distributions; however, we find that the stellar masses in EAGLE are 0.2–0.4 dex greater than the observational sample, which consequently leads to lower specific star formation rates (sSFRs). We compare these results to our previous study at high redshift, finding agreement in both the observations and simulations, whereby the widths of sSFR distributions are similar (∼0.4–0.6 dex) and the median of the SFR distributions lie below the star-forming main sequence by ∼0.3–0.5 dex across all samples. We also use EAGLE to select a sample of AGN host galaxies at high and low redshift and follow their characteristic evolution from z = 8 to z = 0. We find similar behaviour between these two samples, whereby star formation is quenched when the black hole goes through its phase of most rapid growth. Utilizing EAGLE we find that 23 per cent of AGN selected at z ∼ 0 are also AGN at high redshift, and that their host galaxies are among the most massive objects in the simulation. Overall, we find EAGLE reproduces the observations well, with some minor inconsistencies (∼0.2 dex in stellar masses and ∼0.4 dex in sSFRs).


2018 ◽  
Vol 613 ◽  
pp. A34 ◽  
Author(s):  
D. Paraficz ◽  
M. Rybak ◽  
J. P. McKean ◽  
S. Vegetti ◽  
D. Sluse ◽  
...  

We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z = 0.654 star-forming/quasar composite RX J1131-1231 at 240–400 mas angular resolution. The continuum emission is found to be compact and coincident with the optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-parsec-scales resolution using a Bayesian pixelated visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a large rotating disk with a major-axis FWHM ~9.4 kpc at an inclination angle of i = 54° and with a maximum rotational velocity of 280 km s−1. From dynamical model fitting we find an enclosed mass within 5 kpc of M(r < 5 kpc) = (1.46 ± 0.31) × 1011 M⊙. The molecular gas distribution is highly structured, with clumps that are co-incident with higher gas velocity dispersion regions (40–50 km s−1) and with the intensity peaks in the optical emission, which are associated with sites of on-going turbulent star-formation. The peak in the CO (2-1) distribution is not co-incident with the AGN, where there is a paucity of molecular gas emission, possibly due to radiative feedback from the central engine. The intrinsic molecular gas luminosity is L′CO = 1.2 ± 0.3 × 1010 K km s−1 pc2 and the inferred gas mass is MH2 = 8.3 ± 3.0 × 1010 M⊙, which given the dynamical mass of the system is consistent with a CO–H2 conversion factor of α = 5.5 ± 2.0 M⊙ (K km s−1 pc2)−1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR = 69−25+41 × (7.3/μIR) M⊙ yr−1, which demonstrates the composite star-forming and AGN nature of this system.


2002 ◽  
Vol 206 ◽  
pp. 22-25
Author(s):  
Ray S. Furuya ◽  
Yoshimi Kitamura ◽  
Alwyn Wootten ◽  
Mark J. Claussen ◽  
Ryohei Kawabe

The class 0 source S106 FIR is a good candidate to investigate a very early phase of star formation because of the presence of an AU-scale Microjet, discovered by our VLBA H2O maser observations and the absence of an extensive CO outflow. In order to reveal the properties of S106 FIR, we conducted observations of 2-mm continuum emission with the Nobeyama Millmeter Array. We detected a weak compact continuum emission around S106 FIR. We analysed the spectral energy distribution of S106 FIR. It is found that the dust temperature and the β index of the dust opacity range from 31 to 55 K and from 1.4 to 1.6, respectively. Using these results, we computed the mass of the core aound S106 FIR and the bolometric luminosity of 3.1 to 5.8 M⊙ and 230 to 1070 L⊙, respectively.


2013 ◽  
Vol 9 (S304) ◽  
pp. 204-204
Author(s):  
Amy Kimball ◽  
J. Condon ◽  
C. Lonsdale ◽  
M. Lacy

AbstractI have combined data from sky surveys in the UV to the mid-IR, along with radio and X-ray data, to identify the most luminous QSOs in the Universe. The primary sky surveys were the Sloan Digital Sky Survey (SDSS) 7th Data Release QSO Catalog, which provides unambiguous broad-line QSO classification and robust redshifts, and the Wide-field Infrared Survey Explorer (WISE) mid-IR catalog, because a large percentage of QSO bolometric luminous emerges in the IR. Out of the 100,000 SDSS/WISE QSOs, we find 140 (< 0.2%) with bolometric luminosity greater than 2×1014Lo, with redshifts ranging from about 1.7 to 5. The most luminous QSO found has Lbol ≈7×1014Lo. Merger-based galaxy evolution models predict that the host galaxies of such sources at peak QSO luminosity are undergoing a short-lived phase of extreme AGN feedback and massive star-formation activity after a major merger. Upcoming sub-mm observations with the new Atacama Large Millimeter/Sub-millimeter Array (ALMA), for a subset of the sample, will soon reveal crucial host galaxy properties of this unique sample.


2019 ◽  
Vol 488 (4) ◽  
pp. 5029-5041 ◽  
Author(s):  
Tetsuya Hashimoto ◽  
Bunyo Hatsukade ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Kouji Ohta ◽  
...  

ABSTRACT The event rate of long gamma-ray bursts (GRBs) is expected to be a useful tracer of cosmic star-formation history. For this purpose, it is necessary to understand what kinds of star formation/galaxies are traced by GRBs. Here we report rest-frame far-infrared (FIR) continuum detections of the GRB 070521 and 080207 host galaxies at z ∼ 2 with Atacama Large Millimeter/submillimeter Array (ALMA) bands 8 and 9. FIR photometry provides reliable star-formation rates (SFRs), because FIR emission is free from dust extinction and possible radio contamination from the long-lived afterglows of GRBs. Spectral energy distribution fitting yields 49.85$^{+72.33}_{-2.86}$ and 123.4$^{+25.19}_{-21.78}$ M⊙ yr−1 for the 070521 and 080207 hosts, respectively. The derived SFRs place them on the ‘main sequence’ of normal star-forming galaxies at z ∼ 2. The derived SFRs are significantly lower than those from radio observations. It is inferred that the observed radio fluxes in a previous study are contaminated by afterglows. ALMA marginally detected the [C ii] 158-μm emission line from the GRB 080207 host galaxy with signal-to-noise ratio (S/N) ∼ 4. This is the first detection of [C ii] 158-μm from a GRB host at z &gt; 2 and the second detection among known GRBs. The luminosity ratio of [C ii] 158 μm to FIR is 7.5 × 10−4, which is one of the smallest values among galaxies at z ∼ 1–2 with the same FIR luminosity. The ‘[C ii] deficit’ could be a new physical property with which to characterize GRB hosts at z ∼ 1–2. Possible parameters controlling the deficit include the metallicity, initial mass function and gas density.


2020 ◽  
Vol 645 ◽  
pp. A33
Author(s):  
M. Bischetti ◽  
C. Feruglio ◽  
E. Piconcelli ◽  
F. Duras ◽  
M. Pérez-Torres ◽  
...  

Context. Sources at the brightest end of the quasi-stellar object (QSO) luminosity function, during the peak epoch in the history of star formation and black hole accretion (z ∼ 2−4, often referred to as “Cosmic noon”) are privileged sites to study the cycle of feeding & feedback processes in massive galaxies. Aims. We aim to perform the first systematic study of cold gas properties in the most luminous QSOs, by characterising their host-galaxies and environment. These targets exhibit indeed widespread evidence of outflows at nuclear and galactic scales. Methods. We analyse ALMA, NOEMA and JVLA observations of the far-infrared continuum, CO and [CII] emission lines in eight QSOs (bolometric luminosity LBol ≳ 3 × 1047 erg s−1) from the WISE-SDSS selected hyper-luminous (WISSH) QSOs sample at z ∼ 2.4−4.7. Results. We report a 100% emission line detection rate and a 80% detection rate in continuum emission, and we find CO emission to be consistent with the steepest CO ladders observed so far. Sub-millimetre data reveal presence of (one or more) bright companion galaxies around ∼80% of WISSH QSOs, at projected distances of ∼6−130 kpc. We observe a variety of sizes for the molecular gas reservoirs (∼1.7−10 kpc), mostly associated with rotating disks with disturbed kinematics. WISSH QSOs typically show lower CO luminosity and higher star formation efficiency than infrared matched, z ∼ 0−3 main-sequence galaxies, implying that, given the observed SFR ∼170−1100 M⊙ yr−1, molecular gas is converted into stars in ≲50 Myr. Most targets show extreme dynamical to black-hole mass ratios Mdyn/MBH ∼ 3−10, two orders of magnitude smaller than local relations. The molecular gas fraction in the host-galaxies of WISSH is lower by a factor of ∼10−100 than in star forming galaxies with similar M*. Conclusions. Our analysis reveals that hyper-luminous QSOs at Cosmic noon undergo an intense growth phase of both the central super-massive black hole and of the host-galaxy. These systems pinpoint the high-density sites where giant galaxies assemble, where we show that mergers play a major role in the build-up of the final host-galaxy mass. We suggest that the observed low molecular gas fraction and short depletion timescale are due to AGN feedback, whose presence is indicated by fast AGN-driven ionised outflows in all our targets.


2020 ◽  
Vol 496 (4) ◽  
pp. 4405-4419
Author(s):  
Tiger Yu-Yang Hsiao ◽  
Tetsuya Hashimoto ◽  
Jia-Yuan Chang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
...  

ABSTRACT Gamma-ray bursts (GRBs) can be a promising tracer of cosmic star formation rate history (CSFRH). In order to reveal the CSFRH using GRBs, it is important to understand whether they are biased tracers or not. For this purpose, it is crucial to understand properties of GRB host galaxies, in comparison to field galaxies. In this work, we report ALMA far-infrared (FIR) observations of six z ∼ 2 IR-bright GRB host galaxies, which are selected for the brightness in IR. Among them, four host galaxies are detected for the first time in the rest-frame FIR. In addition to the ALMA data, we collected multiwavelength data from previous studies for the six GRB host galaxies. Spectral energy distribution fitting analyses were performed with cigale to investigate physical properties of the host galaxies, and to test whether active galactic nucleus (AGN) and radio components are required or not. Our results indicate that the best-fitting templates of five GRB host galaxies do not require an AGN component, suggesting the absence of AGNs. One GRB host galaxy, 080207, shows a very small AGN contribution. While derived stellar masses of the three host galaxies are mostly consistent with those in previous studies, interestingly the value of star formation rates (SFRs) of all six GRB hosts are inconsistent with previous studies. Our results indicate the importance of rest-frame FIR observations to correctly estimate SFRs by covering thermal emission from cold dust heated by star formation.


2018 ◽  
Vol 620 ◽  
pp. A16 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Ivan Delvecchio ◽  
Anna Kapińska ◽  
Paolo Ciliegi ◽  
...  

The classification of the host galaxies of the radio sources in the 25 deg2 ultimate XMM extragalactic survey south field (XXL-S) is presented. XXL-S was surveyed at 2.1 GHz with the Australia Telescope Compact Array (ATCA) and is thus far the largest area radio survey conducted down to rms flux densities of σ ~ 41 μJy beam−1. Of the 6287 radio sources in XXL-S, 4758 (75.7%) were cross-matched to an optical counterpart using the likelihood ratio technique. There are 1110 spectroscopic redshifts and 3648 photometric redshifts available for the counterparts, of which 99.4% exist out to z ~ 4. A number of multiwavelength diagnostics, including X-ray luminosities, mid-infrared colours, spectral energy distribution fits, radio luminosities, and optical emission lines and colours, were used to classify the sources into three types: low-excitation radio galaxies (LERGs), high-excitation radio galaxies (HERGs), and star-forming galaxies (SFGs). The final sample contains 1729 LERGs (36.3%), 1159 radio-loud HERGs (24.4%), 296 radio-quiet HERGs (6.2%), 558 SFGs (11.7%), and 1016 unclassified sources (21.4%). The XXL-S sub-mJy radio source population is composed of ~75% active galactic nuclei and ~20% SFGs down to 0.2 mJy. The host galaxy properties of the HERGs in XXL-S are independent of the HERG selection, but the XXL-S LERG and SFG selection is, due to the low spectral coverage, largely determined by the known properties of those populations. Considering this caveat, the LERGs tend to exist in the most massive galaxies with low star formation rates and redder colours, whereas the HERGs and SFGs exist in galaxies of lower mass, higher star formation rates, and bluer colours. The fraction of blue host galaxies is higher for radio-quiet HERGs than for radio-loud HERGs. LERGs and radio-loud HERGs are found at all radio luminosities, but radio-loud HERGs tend to be more radio luminous than LERGs at a given redshift. These results are consistent with the emerging picture in which LERGs exist in the most massive quiescent galaxies typically found in clusters with hot X-ray halos and HERGs are associated with ongoing star formation in their host galaxies via the accretion of cold gas.


2020 ◽  
Vol 493 (3) ◽  
pp. 3744-3756 ◽  
Author(s):  
Judit Fogasy ◽  
K K Knudsen ◽  
G Drouart ◽  
C D P Lagos ◽  
L Fan

ABSTRACT The gas content of galaxies is a key factor for their growth, starting from star formation and black hole accretion to galaxy mergers. Thus, characterizing its properties through observations of tracers like the CO emission line is of big importance in order to understand the bigger picture of galaxy evolution. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of dust continuum, CO(5–4) and CO(8–7) line emission in the quasar–star-forming companion system SMM J04135+10277 (z = 2.84). Earlier low-J CO studies of this system found a huge molecular gas reservoir associated with the companion galaxy, while the quasar appeared gas-poor. Our CO observations revealed that the host galaxy of the quasar is also gas-rich, with an estimated molecular gas mass of $\sim (0.7{\!-\!}2.3)\times 10^{10}\, \rm M_{\odot}$. The CO line profiles of the companion galaxy are very broad ($\sim 1000\, \rm km\, s^{-1}$), and show signs of rotation of a compact, massive system. In contrast to previous far-infrared observations, we resolve the continuum emission and detect both sources, with the companion galaxy dominating the dust continuum and the quasar having a $\sim 25{{\ \rm per\ cent}}$ contribution to the total dust emission. By fitting the infrared spectral energy distribution of the sources with mr-moose and empirical templates, the infrared luminosities of the quasar and the companion are in the range of $L_{\rm IR, QSO}\sim (2.1{\!-\!}9.6)\times 10^{12}\, \rm L_{\odot}$ and $L_{\rm IR, Comp.}\sim (2.4{\!-\!}24)\times 10^{12}\, \rm L_{\odot}$, while the estimated star formation rates are $\sim 210{\!-\!}960$ and $\sim 240{\!-\!}2400\, \rm M_{\odot }\, yr^{-1}$, respectively. Our results demonstrate that non-detection of low-J CO transition lines in similar sources does not necessarily imply the absence of massive molecular gas reservoir but that the excitation conditions favour the excitation of high-J transitions.


Sign in / Sign up

Export Citation Format

Share Document