scholarly journals Simulating the Negative Jet Feedback Mechanism in Common Envelope Jet Supernovae

2021 ◽  
Vol 922 (1) ◽  
pp. 61
Author(s):  
Aldana Grichener ◽  
Coral Cohen ◽  
Noam Soker

Abstract We use the stellar evolution code MESA to study the negative jet feedback mechanism in common envelope jet supernovae (CEJSNe), in which a neutron star (NS) launches jets in the envelope of a red supergiant (RSG). We find that the feedback reduces the mass accretion rate to be χ j ≃ 0.04–0.3 times the mass accretion rate without the operation of jets. We mimic the effect of the jets on the RSG envelope by depositing the energy that the jets carry into the envelope zones outside the NS orbit. The energy deposition inflates the envelope, therefore reducing the density in the NS vicinity, which in turn reduces the mass accretion rate in a negative feedback cycle. In calculating the above values for the negative jet feedback coefficient (the further reduction in the accretion rate) χ j, we adopt the canonical ratio of jet power to actual accretion power of 0.1, and the results of numerical simulations that show the actual mass accretion rate to be a fraction of 0.1–0.5 of the Bondi–Hoyle–Lyttleton mass accretion rate.

2021 ◽  
Vol 1869 (1) ◽  
pp. 012156
Author(s):  
A Yasrina ◽  
N Widianingrum ◽  
N S Risdianto ◽  
D Andra ◽  
N A Pramono ◽  
...  

2008 ◽  
Vol 4 (S259) ◽  
pp. 395-396 ◽  
Author(s):  
Swetlana Hubrig ◽  
C. Grady ◽  
M. Schöller ◽  
O. Schütz ◽  
B. Stelzer ◽  
...  

AbstractWe present the results of a new magnetic field survey of Herbig Ae/Be and A debris disk stars. They are used to determine whether magnetic field properties in these stars are correlated with the mass-accretion rate, disk inclinations, companion(s), Silicates, PAHs, or show a more general correlation with age and X-ray emission as expected for the decay of a remnant dynamo.


1987 ◽  
Vol 93 ◽  
pp. 759-762
Author(s):  
T. Iijima

AbstractThe mass accretion process onto the hot component of AG Dra and its explosive phenomena are discussed. The hot component seems to be a massive white dwarf (M > 1 M⊙). The mass accretion rate is estimated to be about 10−7M⊙/year. Many properties of the explosive phenomena agree with those of mild hydrogen flashes expected from this rapid mass accretion.


2020 ◽  
Vol 497 (2) ◽  
pp. 1895-1903 ◽  
Author(s):  
E C Wilson ◽  
J Nordhaus

ABSTRACT The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution.


2002 ◽  
Vol 206 ◽  
pp. 400-403
Author(s):  
Yuko Ishihara ◽  
Naomasa Nakai ◽  
Naoko Iyomoto ◽  
Kazuo Makishima ◽  
Phil Diamond ◽  
...  

Our observations of H2O masers have detected some high-velocity features and a secular velocity drift of the systemic features in the Seyfert 2 Galaxy IC 2560. The high-velocity features were blue- and red-shifted from the systemic velocity of 220-420 km s−1 and 210-350 km s−1, respectively. The velocity of the systemic features drifted at a secular rate of 2.62 km s−1 yr−1. Assuming the existence of a compact rotating disk as in NGC 4258, IC 2560 possesses a nuclear disk with inner and outer radii of 0.07 pc and 0.26 pc, respectively, and a confined mass of 2.8 × 106M⊙ at the center, making the central density > 2.1 × 109M⊙ pc−3. Such a dense object cannot be a cluster of stars, and this strongly suggests that the central mass is a super-massive black hole. Since the 2-10 keV luminosity of IC 2560 is 1 × 1041 erg s−1, the mass accretion rate of the suggested black hole must be 2 × 10−5M⊙ yr−1.


2016 ◽  
Vol 818 (2) ◽  
pp. 188 ◽  
Author(s):  
C. De Boni ◽  
A. L. Serra ◽  
A. Diaferio ◽  
C. Giocoli ◽  
M. Baldi

2010 ◽  
Vol 6 (S275) ◽  
pp. 396-399
Author(s):  
Emma Teresa Whelan ◽  
Francesca Bacciotti ◽  
Tom Ray ◽  
Catherine Dougados

AbstractRecently it has become apparent that proto-stellar-like outflow activity extends to the brown dwarf (BD) mass regime. While the presence of accretion appears to be the common ingredient in all objects known to drive jets fundamental questions remain unanswered. The more prominent being the exact mechanism by which jets are launched, and whether this mechanism remains universal among such a diversity of sources and scales. To address these questions we have been investigating outflow activity in a sample of protostellar objects that differ considerably in mass and mass accretion rate. Central to this is our study of brown dwarf jets. To date Classical T Tauri stars (CTTS) have offered us the best touchstone for decoding the launching mechanism. Here we shall summarise what is understood so far of BD jets and the important constraints observations can place on models. We will focus on the comparison between jets driven by objects with central mass <0.1M⊙ and those driven by CTTSs. In particular we wish to understand how the the ratio of the mass outflow to accretion rate compares to what has been measured for CTTSs.


Sign in / Sign up

Export Citation Format

Share Document