scholarly journals CLEAR: The Gas-phase Metallicity Gradients of Star-forming Galaxies at 0.6 < z < 2.6

2021 ◽  
Vol 923 (2) ◽  
pp. 203
Author(s):  
Raymond C. Simons ◽  
Casey Papovich ◽  
Ivelina Momcheva ◽  
Jonathan R. Trump ◽  
Gabriel Brammer ◽  
...  

Abstract We report on the gas-phase metallicity gradients of a sample of 238 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12 orbit depth Hubble/WFC3 G102 grism spectra taken as a part of the CANDELS Lyα Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies in this sample are consistent with having a zero or slightly positive metallicity gradient (dZ/dR ≥ 0, i.e., increasing with radius) across the full mass range probed (8.5 < log M */M ⊙ < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass—consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider—including star formation rates, sizes, star formation rate surface densities, and star formation rates per gravitational potential energy. We use the observed weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models.

2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


2021 ◽  
Vol 922 (2) ◽  
pp. 114
Author(s):  
Fengwu Sun ◽  
Eiichi Egami ◽  
Pablo G. Pérez-González ◽  
Ian Smail ◽  
Karina I. Caputi ◽  
...  

Abstract We present a Spitzer/IRAC survey of H-faint (H 160 ≳ 26.4, < 5σ) sources in 101 lensing cluster fields. Across a CANDELS/Wide-like survey area of ∼648 arcmin2 (effectively ∼221 arcmin2 in the source plane), we have securely discovered 53 sources in the IRAC Channel-2 band (CH2, 4.5 μm; median CH2 = 22.46 ± 0.11 AB mag) that lack robust HST/WFC3-IR F160W counterparts. The most remarkable source in our sample, namely ES-009 in the field of Abell 2813, is the brightest H-faint galaxy at 4.5 μm known so far (CH2 = 20.48 ± 0.03 AB mag). We show that the H-faint sources in our sample are massive (median M star = 1010.3±0.3 M ⊙), star-forming (median star formation rate = 100 − 40 + 60 M ⊙ yr−1), and dust-obscured (A V = 2.6 ± 0.3) galaxies around a median photometric redshift of z = 3.9 ± 0.4. The stellar continua of 14 H-faint galaxies can be resolved in the CH2 band, suggesting a median circularized effective radius (R e,circ; lensing corrected) of 1.9 ± 0.2 kpc and <1.5 kpc for the resolved and whole samples, respectively. This is consistent with the sizes of massive unobscured galaxies at z ∼ 4, indicating that H-faint galaxies represent the dusty tail of the distribution of a wider galaxy population. Comparing with the ALMA dust continuum sizes of similar galaxies reported previously, we conclude that the heavy dust obscuration in H-faint galaxies is related to the compactness of both stellar and dust continua (R e,circ ∼ 1 kpc). These H-faint galaxies make up 16 − 7 + 13 % of the galaxies in the stellar-mass range of 1010 − 1011.2 M ⊙ at z = 3 ∼ 5, contributing to 8 − 4 + 8 % of the cosmic star formation rate density in this epoch and likely tracing the early phase of massive galaxy formation.


2020 ◽  
Vol 499 (4) ◽  
pp. 4940-4960
Author(s):  
Henry R M Zovaro ◽  
Robert Sharp ◽  
Nicole P H Nesvadba ◽  
Lisa Kewley ◽  
Ralph Sutherland ◽  
...  

ABSTRACT Local examples of jet-induced star formation lend valuable insight into its significance in galaxy evolution and can provide important observational constraints for theoretical models of positive feedback. Using optical integral field spectroscopy, we present an analysis of the ISM conditions in Minkowski’s object (z = 0.0189), a peculiar star-forming dwarf galaxy located in the path of a radio jet from the galaxy NGC 541. Full spectral fitting with ppxf indicates that Minkowski’s object primarily consists of a young stellar population $\sim \! 10\, \rm Myr$ old, confirming that the bulk of the object’s stellar mass formed during a recent jet interaction. Minkowski’s object exhibits line ratios largely consistent with star formation, although there is evidence for a low level ($\lesssim \! 15 \, \rm per \, cent$) of contamination from a non-stellar ionizing source. Strong-line diagnostics reveal a significant variation in the gas-phase metallicity within the object, with $\log \left(\rm O / H \right) + 12$ varying by $\sim \! 0.5\, \rm dex$, which cannot be explained by in-situ star formation, an enriched outflow from the jet, or enrichment of gas in the stellar bridge between NGC 541 and NGC 545/547. We hypothesize that Minkowski’s object either (i) was formed as a result of jet-induced star formation in pre-existing gas clumps in the stellar bridge, or (ii) is a gas-rich dwarf galaxy that is experiencing an elevation in its star formation rate due to a jet interaction, and will eventually redden and fade, becoming an ultradiffuse galaxy as it is processed by the cluster.


2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2021 ◽  
Vol 502 (1) ◽  
pp. 1246-1252
Author(s):  
M Zoccali ◽  
E Valenti ◽  
F Surot ◽  
O A Gonzalez ◽  
A Renzini ◽  
...  

ABSTRACT We analyse the near-infrared colour–magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I@VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of ±0.16 and a systematic error of ±0.20 kpc. This is significantly closer than what is generally assumed, i.e. that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic centre. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by one order of magnitude from the Kennicutt–Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic centre region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy’s central molecular zone.


2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


2019 ◽  
Vol 490 (2) ◽  
pp. 2347-2366 ◽  
Author(s):  
Salvatore Quai ◽  
Lucia Pozzetti ◽  
Michele Moresco ◽  
Annalisa Citro ◽  
Andrea Cimatti ◽  
...  

ABSTRACT Understanding when, how, and where star formation ceased (quenching) within galaxies is still a critical subject in galaxy evolution studies. Taking advantage of the new methodology developed by Quai et al. to select recently quenched galaxies, we explored the spatial information provided by the IFU data to get critical insights on this process. In particular, we analyse 10 SDSS-IV MaNGA galaxies that show regions with low [O iii]/H α compatible with a recent quenching of the star formation. We compare the properties of these 10 galaxies with those of a control sample of 8 MaNGA galaxies with ongoing star formation in the same stellar mass, redshift, and gas-phase metallicity range. The quenching regions found are located between 0.5 and 1.1 effective radii from the centre. This result is supported by the analysis of the average radial profile of the ionization parameter, which reaches a minimum at the same radii, while the one of the star-forming sample shows an almost flat trend. These quenching regions occupy a total area between ∼ 15 and 45 per cent of our galaxies. Moreover, the average radial profile of the star formation rate surface density of our sample is lower and flatter than that of the control sample, at any radii, suggesting a systematic suppression of the star formation in the inner part of our galaxies. Finally, the radial profiles of gas-phase metallicity of the two samples have a similar slope and normalization. Our results cannot be ascribed to a difference in the intrinsic properties of the analysed galaxies, suggesting a quenching scenario more complicated than a simple inside-out quenching.


2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


Sign in / Sign up

Export Citation Format

Share Document