scholarly journals Mass Transfer and Stellar Evolution of the White Dwarfs in AM CVn Binaries

2021 ◽  
Vol 923 (1) ◽  
pp. 125
Author(s):  
Tin Long Sunny Wong ◽  
Lars Bildsten

Abstract We calculate the stellar evolution of both white dwarfs (WDs) in AM CVn binaries with orbital periods of P orb ≈ 5–70 minutes. We focus on the cases where the donor starts as a M He < 0.2M ⊙ helium WD and the accretor is a M WD > 0.6 M ⊙ WD. Using Modules for Experiments in Stellar Astrophysics, we simultaneously evolve both WDs assuming conservative mass transfer and angular momentum loss from gravitational radiation. This self-consistent evolution yields important feedback of the properties of the donor on the mass-transfer rate, M ̇ , as well as the thermal evolution of the accreting WD. Consistent with earlier work, we find that the high M ̇ 's at early times forces an adiabatic evolution of the donor for P orb < 30 minutes so that its mass–radius relation depends primarily on its initial entropy. As the donor reaches M He ≈ 0.02–0.03 M ⊙ at P orb ≃ 30 minutes, it becomes fully convective and could lose entropy and expand much less than expected under further mass loss. However, we show that the lack of reliable opacities for the donor’s surface inhibit a secure prediction for this possible cooling. Our calculations capture the core heating that occurs during the first ≈107 yr of accretion and continue the evolution into the phase of WD cooling that follows. When compared to existing data for accreting WDs, as seen by Cheng and collaborators for isolated WDs, we also find that the accreting WDs are not as cool as we would expect given the amount of time they have had to cool.

1997 ◽  
Vol 163 ◽  
pp. 828-829 ◽  
Author(s):  
R. F. Webbink ◽  
V. Kalogera

AbstractConsiderations of donor star stability, age, and mass transfer rate show that low-mass X-ray binaries and binary millisecond pulsars with orbital periods longer than a few days must have survived an initial phase of super-Eddington mass transfer. We review the physical arguments leading to this conclusion, and examine its implications for the apparent discrepancy between the death rate for low-mass X-ray binaries and the birth rate of binary millisecond pulsars.


1993 ◽  
Vol 137 ◽  
pp. 807-809
Author(s):  
A.A. Bojarchuk ◽  
V.M. Chechetkin ◽  
O.A. Kuznetzov ◽  
Yu.P. Popov

AbstractThe problem of angular momentum loss in binaries and its influence on stellar evolution is considered. The results of 2D hydrodynamics computer simulation of mass transfer is presented.


1989 ◽  
Vol 114 ◽  
pp. 450-453
Author(s):  
Izumi Hachisu ◽  
Mariko Kato

We examine whether or not double white dwarfs are ultimately merging into one body. It has been argued that such a double white dwarf system forms from some intermediate-mass binary stars and will merge due to the gravitational radiation which decreases the separation of binary. After filling the inner critical Roche lobe, the less massive component begins to transfer its mass to the more massive one. When the mass transfer rate exceeds a some critical value, a common envelope is formed. If the common envelope is hydrostatic, the mass transfer is tuned up to be a some value which depends only on the white dwarf mass, radius, and the Roche lobe size. The mass transfer from the less massive to the more massive components leads the separation to increase. On the other hand, the gravitational radiation effect reduces the separation. Which effect wins determines the fate of double white dwarfs, that is, whether merging or not merging. Since the formula of the gravitational radiation effect is well known, we have studied the mass accretion rate in common envelope phase of double white dwarfs assuming the Roche lobe size is as small as 0.03 R⊙ or 0.1 R⊙.


1979 ◽  
Vol 53 ◽  
pp. 504-504
Author(s):  
B. Paczynski ◽  
W. Krzeminski

The shortest known orbital period of a cataclysmic binary with a hydrogen dwarf secondary filling its Roche lobe is about 80 minutes. Theoretically the shortest possible orbital period for such a system is less than 60 minutes. We tried to explain why the periods shorter than 80 minutes are not observed. We estimated the time scale of angular momentum loss of a cataclysmic binary and the resulting mass transfer rate. The minimum orbital period for a given Ṁ is obtained during the transition of the secondary from the Main Sequence onto the Degenerate Dwarf Sequence. Pmin ∝ Ṁ½ Therefore, only those systems can reach low P for which Ṁ is small. This explains why among the shortest period cataclysmic variables there are no novae: presumably their mass transfer rates are too large. It also indicates that “polars” (AM Her-type stars) and SU UMa-type stars should have low Ṁ.


2015 ◽  
Vol 2 (1) ◽  
pp. 188-191 ◽  
Author(s):  
L. Schmidtobreick ◽  
C. Tappert

The population of cataclysmic variables with orbital periods right above the period gap are dominated by systems with extremely high mass transfer rates, the so-called SW Sextantis stars. On the other hand, some old novae in this period range which are expected to show high mass transfer rate instead show photometric and/or spectroscopic resemblance to low mass transfer systems like dwarf novae. We discuss them as candidates for so-called hibernating systems, CVs that changed their mass transfer behaviour due to a previously experienced nova outburst. This paper is designed to provide input for further research and discussion as the results as such are still very preliminary.


2004 ◽  
Vol 194 ◽  
pp. 109-110
Author(s):  
M. Uemura

AbstractWe revealed that the hydrogen-rich cataclysmic variable lRXS J232953.9+062814 is an SU UMa-type dwarf nova with a superbump period of 66.774±0.010 min. A photometric orbital period is determined to be 64.184± 0.003 min, which is below the period minimum. Although the standard evolutionary scenario of cataclysmic variables predicts lower mass-transfer rates in systems with shorter orbital periods, its short recurrence time of outbursts and bright apparent magnitude indicate that this object has a relatively high mass-transfer rate. With the analogous system V485 Cen, these objects establish the first subpopulation in hydrogen-rich cataclysmic variables below the period minimum. Concerning the evolutionary status of them, we propose that they are progenitors of AM CVn stars on evolutionary courses in which systems have an evolved secondary star with a hydrogen-exhausted core.


2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Taichi Kato ◽  
Naoto Kojiguchi

Abstract IW And-type dwarf novae are a recently recognized group of cataclysmic variables which are characterized by a sequence of brightening from a standstill-like phase with damping oscillations often followed by a deep dip. We found that the supposed classical nova BC Cas which erupted in 1929 experienced a state of an IW And-type dwarf nova in 2018, 89 yr after the eruption. This finding suggests that a high mass-transfer rate following the nova eruption is associated with the IW And-type phenomenon. The mass of the white dwarf inferred from the decline rate of the nova is considerably higher than the average mass of the white dwarfs in cataclysmic variables, and these massive white dwarfs may be responsible for the manifestation of the IW And-type phenomenon.


1996 ◽  
Vol 158 ◽  
pp. 447-448
Author(s):  
K. Schenker ◽  
U. Kolb ◽  
H. Ritter

AbstractWe present calculations of the long-term evolution of CVs which include the influence of nova outbursts. In particular we investigate the consequences of the discontinuous mass loss due to recurring outburst events and the effects of frictional angular momentum loss (FAML), i.e. the interaction of the expanding nova envelope with the secondary. We show that a description assuming continuous mass loss – averaged over a complete nova cycle – is applicable for determining the mean mass transfer rate and the secular evolution both with and without FAML. Between two subsequent outbursts, deviations from the mean evolution depend on the strength of FAML and on the mass ejected during the outburst. Formally FAML is a consequential angular momentum loss [1] and therefore increases the mean mass transfer rate by pushing the systems closer to mass transfer instability. Depending on the actual strenghth of FAML the long-term evolution of CVs could be significantly different from the standard model predictions.


Author(s):  
R Pakmor ◽  
Y Zenati ◽  
H B Perets ◽  
S Toonen

Abstract Normal type Ia supernovae (SNe) are thought to arise from the thermonuclear explosion of massive (&gt;0.8 M⊙) carbon-oxygen white dwarfs (WDs), although the exact mechanism is debated. In some models helium accretion on to a carbon-oxygen (CO) WD from a companion was suggested to dynamically trigger a detonation of the accreted helium shell. The helium detonation then produces a shock that after converging on itself close to the core of the CO-WD, triggers a secondary carbon detonation and gives rise to an energetic explosion. However, most studies of such scenarios have been done in one or two dimensions, and/or did not consider self-consistent models for the accretion and the He-donor. Here we make use of detailed 3D simulation to study the interaction of a He-rich hybrid 0.69 M⊙ HeCO WD with a more massive 0.8 M⊙ CO WD. We find that accretion from the hybrid WD on to the CO WD gives rise to a helium detonation. However, the helium detonation does not trigger a carbon detonation in the CO WD. Instead, the helium detonation burns through the accretion stream to also burn the helium shell of the donor hybrid HeCO-WD. The detonation of its massive helium shell then compresses its CO core, and triggers its detonation and full destruction. The explosion gives rise to a faint, likely highly reddened transient, potentially observable by the Vera Rubin survey, and the high-velocity (∼1000 kms−1) ejection of the heated surviving CO WD companion. Pending on uncertainties in stellar evolution we estimate the rate of such transient to be up to $\sim 10{{\ \rm per\ cent}}$ of the rate of type Ia SNe.


1996 ◽  
Vol 158 ◽  
pp. 131-132
Author(s):  
J.-E. Solheim

The AM CVn stars are mass transferring, interacting binary, white dwarf systems with orbital periods of 15…45 minutes. Hydrogen is completely lost from these systems, and we observe small helium disks which may show thermal and tidal instabilities if the mass transfer rate is large enough (Osaki 1995). A tidal instability brings the disk into a superoutburst state, and in the light curve we may observe superhumps. Based on the observed periods and mass transfer rates we can divide the AM CVn stars into three groups:A: In permanent superoutburst: AM CVn and EC 15330-1403B: Regular superoutbursts: CR Boo, V803 Cen and CP EriC: Not yet observed superoutburst: GP ComGroup A consists of systems with disks which are too hot to decline into a low state. These disks are in a constant superoutburst state, analogous to nova-like CVs which show no outbursts, but still exhibit permanent superhumps (Skillman & Patterson 1993). Group B shows normal outbursts which can trigger superoutbursts, analogous to the VY Scl dwarf novae. The group C object may also be a superhumper, but with very infrequent outbursts analogous to the SU UMa stars (Warner 1995). In the following we will discuss evidence for superoutbursts in these systems, and the likelihood for these systems to develop elliptical disks.


Sign in / Sign up

Export Citation Format

Share Document