scholarly journals The Circum-Galactic Medium of Massive Spirals. II. Probing the Nature of Hot Gaseous Halo around the Most Massive Isolated Spiral Galaxies

2017 ◽  
Vol 233 (2) ◽  
pp. 20 ◽  
Author(s):  
Jiang-Tao Li ◽  
Joel N. Bregman ◽  
Q. Daniel Wang ◽  
Robert A. Crain ◽  
Michael E. Anderson ◽  
...  
Keyword(s):  
1998 ◽  
Vol 188 ◽  
pp. 57-60
Author(s):  
H. Awaki

The Einstein observations revealed that starburst and luminous elliptical galaxies had X-ray halo. These galaxies have quite different stellar population. Starburst galaxies contain young massive stars, while elliptical galaxies generally contain an old-metal rich population dominated by K and M giants. Therefore a question is why these two type of galaxies commonly have hot gas, in spite of quite different stellar populations. In order to address this question, we observed these galaxies with ASCA. In this paper, I would like to present observational results, then compare the physical parameters of the hot gas in these galaxies.


2011 ◽  
Vol 737 (1) ◽  
pp. 22 ◽  
Author(s):  
Michael E. Anderson ◽  
Joel N. Bregman
Keyword(s):  

Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


2020 ◽  
Vol 15 (S359) ◽  
pp. 173-174
Author(s):  
A. Cortesi ◽  
L. Coccato ◽  
M. L. Buzzo ◽  
K. Menéndez-Delmestre ◽  
T. Goncalves ◽  
...  

AbstractWe present the latest data release of the Planetary Nebulae Spectrograph Survey (PNS) of ten lenticular galaxies and two spiral galaxies. With this data set we are able to recover the galaxies’ kinematics out to several effective radii. We use a maximum likelihood method to decompose the disk and spheroid kinematics and we compare it with the kinematics of spiral and elliptical galaxies. We build the Tully- Fisher (TF) relation for these galaxies and we compare with data from the literature and simulations. We find that the disks of lenticular galaxies are hotter than the disks of spiral galaxies at low redshifts, but still dominated by rotation velocity. The mechanism responsible for the formation of these lenticular galaxies is neither major mergers, nor a gentle quenching driven by stripping or Active Galactic Nuclei (AGN) feedback.


2020 ◽  
Vol 498 (4) ◽  
pp. 4983-5002
Author(s):  
D Wittor ◽  
M Gaspari

ABSTRACT Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the 3D turbulent ‘weather’ in a high-resolution Eulerian simulation of active galactic nucleus (AGN) feedback, shown to be consistent with multiple multiwavelength observables of massive galaxies. We carry out post-processing simulations of Lagrangian tracers to track the evolution of enstrophy, a proxy of turbulence, and its related sinks and sources. This allows us to isolate in depth the physical processes that determine the evolution of turbulence during the recurring strong and weak AGN feedback events, which repeat self-similarly over the Gyr evolution. We find that the evolution of enstrophy/turbulence in the gaseous halo is highly dynamic and variable over small temporal and spatial scales, similar to the chaotic weather processes on Earth. We observe major correlations between the enstrophy amplification and recurrent AGN activity, especially via its kinetic power. While advective and baroclinc motions are always subdominant, stretching motions are the key sources of the amplification of enstrophy, in particular along the jet/cocoon, while rarefactions decrease it throughout the bulk of the volume. This natural self-regulation is able to preserve, as ensemble, the typically observed subsonic turbulence during cosmic time, superposed by recurrent spikes via impulsive anisotropic AGN features (wide outflows, bubbles, cocoon shocks). This study facilitates the preparation and interpretation of the thermo-kinematical observations enabled by new revolutionary X-ray integral field unit telescopes, such as XRISM and Athena.


1996 ◽  
Vol 173 ◽  
pp. 97-98
Author(s):  
Matthias Bartelmann ◽  
Abraham Loeb

A wealth of observational data supports the commonly held view that damped Lyman-α (Lyα) absorption in QSO spectra is associated with neutral-hydrogen (HI) disks in spiral galaxies. Most of the HI probed by QSO absorption lines is traced by damped Lyα lines because of their high column densities, N > 1020 cm–2. The spiral galaxies hosting the HI disks can act as gravitational lenses on the QSOs. If the HI column density increases towards the center of the disks, as suggested by observations of local galaxies, the magnification bias preferentially selects for high column-density systems. The estimates of HI in damped Lyα systems can then systematically be distorted by gravitational lensing.


Sign in / Sign up

Export Citation Format

Share Document