scholarly journals The N- and C-terminal domains of parathyroid hormone-related protein affect differently the osteogenic and adipogenic potential of human mesenchymal stem cells

2010 ◽  
Vol 42 (2) ◽  
pp. 87 ◽  
Author(s):  
Antonio Casado-Díaz ◽  
Raquel Santiago-Mora ◽  
José Manuel Quesada
2019 ◽  
Vol 8 (6) ◽  
pp. 836 ◽  
Author(s):  
Jeevithan Elango ◽  
Saeed Ur Rahman ◽  
Yves Henrotin ◽  
José Eduardo Maté Sánchez de Val ◽  
Bin Bao ◽  
...  

A recent study reported the expression of receptor activator of nuclear factor-κB (RANK) in mesenchymal stem cells (MSCs) surface that negatively regulates osteogenesis of MSCs. Empirical evidence from the previous study confirmed the role of parathyroid hormone-related protein (PTHrP) in osteoblastogenesis. However, it is necessary to understand the paracrine role of PTHrP and RANKL for osteogenesis in order to explore the hidden secrets in bone biology. Considering the above concept, paracrine cues of soluble-receptor activator of nuclear factor-κB ligand (sRANKL) and PTHrP in osteogenic differentiation of MSCs were investigated. Our results confirmed that sRANKL increased the expression of surface-RANK in MSCs at the earlier stage of osteogenesis, which was downregulated later in differentiated MSCs. In contrast, RANKL expression was low at the earlier stage of MSCs proliferation and high at the differentiation stage of MSCs, which may play a fundamental role in osteoclast formation. sRANKL downregulated osteogenesis of MSCs by decreasing progressive ankylosis (ANK) protein expression while PTHrP upregulated the osteogenic exploitive effect of sRANKL. Interestingly, when they were co-cultured with MSCs, T-lymphocytes expressed high membrane-RANKL levels that contribute to osteogenesis inhibition during MSC differentiation. Thus, our results disclose that sRANKL treatment downregulates osteogenesis of MSCs by increasing RANK expression at the earlier stage of differentiation and by inhibiting ANK. Further, we demonstrated that PTHrP accelerated the downregulating osteogenic effect of sRANKL.


FEBS Letters ◽  
2010 ◽  
Vol 584 (14) ◽  
pp. 3095-3100 ◽  
Author(s):  
S. Portal-Núñez ◽  
D. Lozano ◽  
L. Fernández de Castro ◽  
A.R. de Gortázar ◽  
X. Nogués ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 9069
Author(s):  
Jang-Woon Kim ◽  
Narae Park ◽  
Jaewoo Kang ◽  
Yena Kim ◽  
Hyerin Jung ◽  
...  

Osteoporosis is commonly treated via the long-term usage of anti-osteoporotic agents; however, poor drug compliance and undesirable side effects limit their treatment efficacy. The parathyroid hormone-related protein (PTHrP) is essential for normal bone formation and remodeling; thus, may be used as an anti-osteoporotic agent. Here, we developed a platform for the delivery of a single peptide composed of two regions of the PTHrP protein (1–34 and 107–139); mcPTHrP 1–34+107–139 using a minicircle vector. We also transfected mcPTHrP 1–34+107–139 into human mesenchymal stem cells (MSCs) and generated Thru 1–34+107–139-producing engineered MSCs (eMSCs) as an alternative delivery system. Osteoporosis was induced in 12-week-old C57BL/6 female mice via ovariectomy. The ovariectomized (OVX) mice were then treated with the two systems; (1) mcPTHrP 1–34+107–139 was intravenously administered three times (once per week); (2) eMSCs were intraperitoneally administered twice (on weeks four and six). Compared with the control OVX mice, the mcPTHrP 1–34+107–139-treated group showed better trabecular bone structure quality, increased bone formation, and decreased bone resorption. Similar results were observed in the eMSCs-treated OVX mice. Altogether, these results provide experimental evidence to support the potential of delivering PTHrP 1–34+107–139 using the minicircle technology for the treatment of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document