Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells.

Author(s):  
X Y Wen ◽  
A K Stewart ◽  
R R Sooknanan ◽  
G Henderson ◽  
T S Hawley ◽  
...  
2000 ◽  
Vol 39 (1-2) ◽  
pp. 51-55 ◽  
Author(s):  
Hideaki Ishikawa ◽  
Maged S. Mahmoud ◽  
Ryuichi Fujii ◽  
Saeid Abroun ◽  
Michio M. Kawano

Blood ◽  
2004 ◽  
Vol 103 (1) ◽  
pp. 242-251 ◽  
Author(s):  
Katja Brocke-Heidrich ◽  
Antje K. Kretzschmar ◽  
Gabriele Pfeifer ◽  
Christian Henze ◽  
Dennis Löffler ◽  
...  

Abstract Interleukin 6 (IL-6) is a growth and survival factor for multiple myeloma cells. As we report here, the IL-6–dependent human myeloma cell line INA-6 responds with a remarkably rapid and complete apoptosis to cytokine withdrawal. Among the antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of apoptosis regulators, only myeloid cell factor-1 (Mcl-1) was slightly induced by IL-6. Overexpression studies demonstrated, however, that IL-6 does not exert its survival effect primarily through this pathway. The IL-6 signal transduction pathways required for survival and the target genes controlled by them were analyzed by using mutated receptor chimeras. The activation of signal transducer and activator of transcription 3 (Stat3) turned out to be obligatory for the survival of INA-6 cells. The same held true for survival and growth of XG-1 myeloma cells. Gene expression profiling of INA-6 cells by using oligonucleotide microarrays revealed many novel IL-6 target genes, among them several genes coding for transcriptional regulators involved in B-lymphocyte differentiation as well as for growth factors and receptors potentially implicated in autocrine or paracrine growth control. Regulation of most IL-6 target genes required the activation of Stat3, underscoring its central role for IL-6 signal transduction. Taken together, our data provide evidence for the existence of an as yet unknown Stat3-dependent survival pathway in myeloma cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4924-4924
Author(s):  
Guangbiao Zhou ◽  
Ying Liu ◽  
Yongxian Cheng

Abstract Abstract 4924 Background Human multiple myeloma (MM) is an incurable hematological malignancy at present, and screen for novel therapy remains an urgent need. The objective of this study was to assess the efficacy of natural compound EBSC-26 on multiple myeloma cells. Methods Inhibition of cell growth and proliferation of MM cell lines by compounds were assessed by WST-8 [2-(2-methoxy-4-nitrophenyl)-3-4-nitrophenyl)-5-(2,4- disulfophenyl)-2H-tetrazolium, monosodium salt] which allows sensitive colorimetric assays for the determination of the number of viable cells. Effects of compounds on cell cycle progression were analyzed by using flow cytometry. Apoptosis was evaluated by analysis of Annexin V. Microtubules were detected by immunofluorescence staining and confocal microscopy. Western blot and semi-quantitative/quantitative RT-PCR were performed to test protein/gene expression. Results EBSC-26 with a purity of up to 99.5%, was extracted from Centipeda minima (L.), a compositae plant used for the treatment of cold, nasal allergy, diarrhea, malaria, and asthma in China. We found that EBSC-26 suppressed proliferation/growth of U266, RPMI8226, dexamethasone-sensitive and resistant MM.1 cells, and induced apoptosis of these cells in a dose- and time-dependent manner. It synergized with Bortezomib and Doxorubicin in inhibition of MM cell proliferation. EBSC-26 overcame the protective effects of interleukin-6 and insulin-like growth factor-1 on multiple myeloma cells. It down-regulated interleukin-6-induced phosphorylation of STAT3 and insulin-like growth factor-1-induced phosphorylation of AKT. Moreover, EBSC-26 caused polymerization of microtubules, and induced G2/M arrest MM cells. Interestingly, an important G2/M-phase regulator, cyclin B1 was dramatically increased by EBSC-26 at protein level in a dose-dependent manner. EBSC-26 also decreased the phosphorylation of CDC2 at tyrosine 15. Conclusions These results suggest that EBSC-26 alone may have a potential in the treatment of multiple myeloma, and a combination of this agent with other compounds might provide further benefits. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 73 (7) ◽  
pp. 1381-1390 ◽  
Author(s):  
Feng Ge ◽  
Chuan-Le Xiao ◽  
Xing-Feng Yin ◽  
Chun-Hua Lu ◽  
Hui-Lan Zeng ◽  
...  

2002 ◽  
Vol 30 (7) ◽  
pp. 711-720 ◽  
Author(s):  
Deepak Gupta ◽  
Klaus Podar ◽  
Yu-Tzu Tai ◽  
Boris Lin ◽  
Teru Hideshima ◽  
...  

2016 ◽  
Vol 17 (11) ◽  
pp. 1927 ◽  
Author(s):  
Bingqian Xie ◽  
Zhijian Xu ◽  
Liangning Hu ◽  
Gege Chen ◽  
Rong Wei ◽  
...  

2009 ◽  
Vol 15 (15) ◽  
pp. 4847-4856 ◽  
Author(s):  
Margret S. Fernandes ◽  
Erica M. Gomes ◽  
Lindsay D. Butcher ◽  
Reuben Hernandez-Alcoceba ◽  
Dongkun Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document