scholarly journals Prediction of the response to chemotherapy in advanced esophageal cancer by gene expression profiling of biopsy samples

2010 ◽  
Vol 37 (5) ◽  
Author(s):  
Takemasa
2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 574-574
Author(s):  
M. Y. Iddawela ◽  
Y. Wang ◽  
R. Russell ◽  
G. Cowley ◽  
M. El-Sheemy ◽  
...  

574 Background: FFPE is a valuable and widely available resource for translational research which to date has been under-used due to technical limitations. Improvement in technology has enabled genome-wide analysis of FFPE samples. We have assessed gene expression and copy number changes in the same cohort of breast cancers to identify markers or pathways important in prediction of treatment response. Methods: FFPE tissues from patients treated with neoadjuvant adriamycin/cyclophosphamide followed by taxanes in a clinical study were used. Gene expression profiling was assessed using the cDNA mediated annealing selection and ligation assay using the cancer panel which assess 502 genes (DASL assay, Illumina). Data was analysed using BeadStudio software. Copy number changes were assessed using the Molecular inversion probe assay with the 50K SNP panel (Affymetrix, California) and analysed using Nexus software (Biodiscovery). Results: Gene expression profiling was carried out on 44 samples. 12/44 (27%) patients had a pathological complete response (pCR) following chemotherapy. Significant differential expression of genes between pCR and non-pCR cancers were shown. TNFRSF5, CTSD, BCL3, ARNT, BIRC3, TGFBR1, MLLT6, and EVI2A were over-expressed and COL18A1, FGF12, IGFBP1 and NOTCH4 which were down-regulated in cancers that have a pCR (p ≤ 0.01). Copy number changes were assessed in 33 samples and comparison of copy number changes in pCR vs. non-pCR showed gains in regions 6q22, 21q21, 4p14, 4q21, 4p14, and loss at 11q11 (p ≤ 0.01). Three regions containing microRNA coding sequences, mir130a (11q11) mir142 (17q23) and mir21 (17q23) showed significant loss among pCR tumours (p < 0.05). Conclusions: This feasibility study shows that FFPE can be used for gene expression and copy number analysis which is a useful tool for the discovery of predictive markers for treatment response in neoadjuvant treatment trials. The role of TNFRSF5, microRNA 21/130a/142, and 11q11 loss should be further investigated as predictive markers of response to chemotherapy. [Table: see text]


2018 ◽  
Vol 32 (7) ◽  
pp. 1388-1396 ◽  
Author(s):  
Lin Li ◽  
Grace Gar-Lee Yue ◽  
Julia Kin-Ming Lee ◽  
Eric Chun-Wai Wong ◽  
Kwok-Pui Fung ◽  
...  

2004 ◽  
Vol 64 (23) ◽  
pp. 8558-8565 ◽  
Author(s):  
François Bertucci ◽  
Pascal Finetti ◽  
Jacques Rougemont ◽  
Emmanuelle Charafe-Jauffret ◽  
Valéry Nasser ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 5566-5577 ◽  
Author(s):  
Els Visser ◽  
Ingrid A. Franken ◽  
Lodewijk A.A. Brosens ◽  
Jelle P. Ruurda ◽  
Richard van Hillegersberg

2002 ◽  
Vol 69 ◽  
pp. 135-142 ◽  
Author(s):  
Elena M. Comelli ◽  
Margarida Amado ◽  
Steven R. Head ◽  
James C. Paulson

The development of microarray technology offers the unprecedented possibility of studying the expression of thousands of genes in one experiment. Its exploitation in the glycobiology field will eventually allow the parallel investigation of the expression of many glycosyltransferases, which will ultimately lead to an understanding of the regulation of glycoconjugate synthesis. While numerous gene arrays are available on the market, e.g. the Affymetrix GeneChip® arrays, glycosyltransferases are not adequately represented, which makes comprehensive surveys of their gene expression difficult. This chapter describes the main issues related to the establishment of a custom glycogenes array.


2007 ◽  
Vol 177 (4S) ◽  
pp. 93-93
Author(s):  
Toshiyuki Tsunoda ◽  
Junichi Inocuchi ◽  
Darren Tyson ◽  
Seiji Naito ◽  
David K. Ornstein

Sign in / Sign up

Export Citation Format

Share Document