scholarly journals Icariin recovers the osteogenic differentiation and bone formation of bone marrow stromal cells from a rat model of estrogen deficiency-induced osteoporosis

2012 ◽  
Vol 12 (1) ◽  
pp. 382-388 ◽  
Author(s):  
ZHIQIANG LUO ◽  
MINGLU LIU ◽  
LIKUN SUN ◽  
FEILONG RUI
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chunrong Li ◽  
Xin Li ◽  
Xian Wang ◽  
Pei Miao ◽  
Jia Liu ◽  
...  

Osteoporosis is a metabolic disease that results in the progressive loss of bone mass, which, in postmenopausal women, is related to oestrogen deficiency. Periostin (POSTN) plays a key role in the early stages of bone formation. However, whether POSTN participates in oestradiol regulation of osteogenic differentiation of bone marrow stromal cells (BMSCs) from ovariectomised (OVX) rats remains unclear. In vivo, using microcomputed tomography (micro-CT), immunohistochemistry, and dynamic analysis of femurs, we found that 17β-E2 promotes bone formation and POSTN expression at the endosteal surface. In vitro, 17β-E2 upregulated POSTN expression in OVX-BMSCs. POSTN overexpression activated the Wnt/β-catenin signalling pathway and enhanced osteogenic differentiation of OVX-BMSCs. Furthermore, knockdown of Postn blocks the involvement of 17β-E2 in the osteogenic differentiation of OVX-BMSCs. Collectively, our study indicated the role of POSTN in the osteogenesis and stemness of OVX-BMSCs and proves that 17β-E2 reduces osteoporosis and promotes osteogenesis through the POSTN-Wnt/β-catenin pathway. POSTN could, therefore, be a novel target gene for anti-osteoporosis therapies.


Author(s):  
Mi Eun Kim ◽  
Jong Keun Seon ◽  
Ju Yeon Kang ◽  
Taek Rim Yoon ◽  
Jun Sik Lee ◽  
...  

Bone morphogenetic proteins (BMPs) have been widely used as treatment for bone repair. However, clinical trials on fracture repair have challenged the effectiveness of BMPs and suggested that delivery of multipotent bone marrow stromal cells (BMSCs) might be beneficial. During bone remodeling and bone fracture repair, multipotent BMSCs differentiate into osteoblasts or chondrocytes to stimulate bone formation and regeneration. Stem cell-based therapies provide a promising approach for bone formation. Extensive research has attempted to develop adjuvants as specific stimulators of bone formation for therapeutic use in patients with bone resorption. We previously reported for the first time bone-forming peptides (BFPs) that induce osteogenesis and bone formation. BFPs are also a promising osteogenic factor for prompting bone regeneration and formation. Thus, the aim of the present study was to investigate the underlying mechanism of a new BFP-4 (FFKATEVHFRSIRST) in osteogenic differentiation and bone formation. This study reports that BFP-4 induces stronger osteogenic differentiation of BMSCs than BMP-7. BFP-4 also induces ALP activity, calcium concentration, and osteogenic factors (Runx2 and osteocalcin) in a dose dependent manner in BMSCs. Therefore, these results indicate that BFP-4 can induce osteogenic differentiation and bone formation. Thus, treatment of multipotent BMSCs with BFP-4 enhanced osteoblastic differentiation and displayed greater bone-forming ability than BMP-7 treatment. These results suggest that BFP-4-stimulated cell therapy may be an efficient and cost-effective complement to BMP-7-based clinical therapy for bone regeneration and formation.


Author(s):  
Daqian Wan ◽  
Songtao Ai ◽  
Huoniu Ouyang ◽  
Liming Cheng

AbstractSenile osteoporosis can cause bone fragility and increased fracture risks and has been one of the most prevalent and severe diseases affecting the elderly population. Bone formation depends on the proper osteogenic differentiation of bone marrow stromal cells (BMSCs) in the bone marrow microenvironment, which is generated by the functional relationship among different cell types in the bone marrow. With aging, bone marrow provides signals that repress osteogenesis. Finding the signals that oppose BMSC osteogenic differentiation from the bone marrow microenvironment and identifying the abnormal changes in BMSCs with aging are key to elucidating the mechanisms of senile osteoporosis. In a pilot experiment, we found that 4-1BBL and 4-1BB were more abundant in bone marrow from aged (18-month-old) mice than young (6-month-old) mice. Meanwhile, significant bone loss was observed in aged mice compared with young mice. However, very little data have been generated regarding whether high-level 4-1BB/4-1BBL in bone marrow was associated with bone loss in aged mice. In the current study, we found upregulation of 4-1BB in the BMSCs of aged mice, which resulted in the attenuation of the osteogenic differentiation potential of BMSCs from aged mice via the p38 MAPK-Dkk1 pathway. More importantly, bone loss of aged mice could be rescued through the blockade of 4-1BB signaling in vivo. Our study will benefit not only our understanding of the pathogenesis of age-related trabecular bone loss but also the search for new targets to treat senile osteoporosis.


Cytokine ◽  
2000 ◽  
Vol 12 (11) ◽  
pp. 1630-1638 ◽  
Author(s):  
Reinhard Gruber ◽  
Christian Mayer ◽  
Waltraud Schulz ◽  
Winfried Graninger ◽  
Meinrad Peterlik ◽  
...  

2016 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Ahmad Jabir Rahyussalim ◽  
Tri Kurniawati ◽  
Nurjati Chairani Siregar ◽  
Agus Syahrurachman ◽  
Ismail Hadisubroto Dilogo ◽  
...  

2009 ◽  
Vol 37 (7) ◽  
pp. 867-875.e1 ◽  
Author(s):  
Fernando Ugarte ◽  
Martin Ryser ◽  
Sebastian Thieme ◽  
Fernando A. Fierro ◽  
Katrin Navratiel ◽  
...  

2007 ◽  
Vol 361-363 ◽  
pp. 1149-1152
Author(s):  
Jeong Joon Yoo ◽  
Jeon Hyun Bang ◽  
Kyung Hoi Koo ◽  
Kang Sup Yoon ◽  
Hee Joong Kim

The relationships between donor age and gender and initial isolation yield and the osteogenic potentials of human bone marrow stromal cells (hBMSCs) have not been clearly elucidated. The authors investigated whether isolation yields and the osteogenic differentiation potentials of hBMSCs are indeed dependent on donor age or gender. Fresh bone marrow was aspirated from iliac crest of 72 donors (mean age 54.1 years; range, 23-84 years; 39 men and 33 women) undergoing total hip arthroplasty. Numbers of mononuclear cells, numbers of colony forming unit-fibroblasts (CFU-Fs) and alkaline phosphatase (ALP)-positive CFU-Fs, and numbers of BMSCs after isolation culture were not found to be significantly dependent on donor age or gender. Moreover, no significant age- or gender-related differences were observed in terms of the proliferation activities, ALP activities, and calcium contents of BMSCs during in vitro osteogenic differentiation. The data obtained from 72 human donors revealed no significant age- or genderrelated differences among hBMSCs in terms of isolation yields, proliferation activities, and osteogenic potentials.


Sign in / Sign up

Export Citation Format

Share Document