scholarly journals Electric vertical take-off and landing fixed wing unmanned aerial vehicle for long endurance or long range?

2019 ◽  
Vol 31 ◽  
pp. 99-107
Author(s):  
Dimo Zafirov

An analysis of requirements to electric vertical take-off and landing unmanned aerial vehicle with fixed wings is carried out in this article. These aircraft have to fulfil requirements of users and to be convenient for operation in any field conditions. Long flight duration and long flight range are important for most missions. Mathematical models for both cases are presented and it has been found that the requirements for the wing load are different. It is recommended to use a type of UAV (Unmanned Aerial Vehicle) that is modular and allows performing flights with different configurations and payload depending on the mission in order to fulfill these requirements.

Aviation ◽  
2016 ◽  
Vol 19 (4) ◽  
pp. 187-193 ◽  
Author(s):  
Valeriy Silkov ◽  
Mykola Delas

The article is dedicated to the substantiation of the complex parameter that characterizes the technical level of an unmanned aerial vehicle (UAV). This parameter includes the maximum lift-to-drag ratio, propeller efficiency, specific fuel consumption, and other components, on which the main flight characteristics, such as flight range and flight duration, depend. To make a comparative assessment of UAVs of different types, a special scale is developed.


Author(s):  
M.K. Padmanabhan ◽  
G. Santhoshkumar ◽  
Praveen Narayan ◽  
N. Jeevaraj ◽  
M. Dinesh ◽  
...  

There are various configurations and parameters that contribute to the Design of Unmanned Aerial Vehicles for specific applications. This paper deals with an innovative design of an unmanned aerial vehicle for a specified class of UAVs that require demands such as long endurance, minimized landing space with vertical take-off and landing (VTOL) capabilities. The focal point of this design is superimposing the high endurance blended wing design into tri-copter to address these parameters. The preliminary calculations are initially performed for the blended wing VTOL vehicle based on the required payload capacity and endurance. Superimposing the tri-copter will decrease the aerodynamic efficiency of the vehicle. Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical methods and algorithms to solve complex problems involving fluid flow which will effectively employed to reduce the cost and time during the conceptual and preliminary design stages. CFD analysis was carried out to estimate the major parameters like lift, drag, lift coefficient (CL) and drag coefficient (CD) for various Angle of Attack (AoA) for configurations of blended wing vehicle with and without tri-copter system in the cruise condition. Thus, the vehicle design and propulsion system is effectively optimized using this drag estimation.


2020 ◽  
Vol 53 (1-2) ◽  
pp. 83-92 ◽  
Author(s):  
Bo Hang Wang ◽  
Dao Bo Wang ◽  
Zain Anwar Ali

To improve the performance of multi-unmanned aerial vehicle path planning in plateau narrow area, a control strategy based on Cauchy mutant pigeon-inspired optimization algorithm is proposed in this article. The Cauchy mutation operator is chosen to improve the pigeon-inspired optimization algorithm by comparing and analyzing the changing trend of fitness function of the local optimum position and the global optimum position when dealing with unmanned aerial vehicle path planning problems. The plateau topography model and plateau wind field model are established. Furthermore, a variety of control constrains of unmanned aerial vehicles are summarized and modeled. By combining with relative positions and total flight duration, a cooperative path planning strategy for unmanned aerial vehicle group is put forward. Finally, the simulation results show that the proposed Cauchy mutant pigeon-inspired optimization method gives better robustness and cooperative path planning strategy which are effective and advanced as compared with traditional pigeon-inspired optimization algorithm.


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877993 ◽  
Author(s):  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Yuxuan Cao

In high-altitude, long-endurance unmanned aerial vehicles, a celestial attitude determination system is used to enhance the inertial navigation system (INS)/global positioning system (GPS) to achieve the required attitude performance. The traditional federal filter is not applicable for INS/GPS/celestial attitude determination system information fusion because it does not consider the mutually coupled relationship between the horizontal reference error in the celestial attitude determination system and the navigation error; this limitation results in reduced navigation accuracy. This article proposes a novel stepwise fusion algorithm with dual correction for multi-sensor navigation. Considering the horizontal reference error, the celestial attitude determination system measurement model is constructed and the issues involved in applying the federal filter are discussed. Then, preliminary error estimation and horizontal reference compensation are added to the navigation architecture. In addition, a sequential update strategy is derived to estimate the attitude error with the compensated celestial attitude determination system based on the preliminary estimation. A stepwise correction filtering algorithm with interactive preliminary and sequential updates that can effectively fuse celestial attitude determination system measurements with the INS/GPS is constructed. High-altitude, long-endurance unmanned aerial vehicle navigation in a remote sensing task is simulated to verify the performance of the proposed method. The simulation results demonstrate that the horizontal reference error is effectively compensated, and the attitude accuracy is significantly improved after stepwise error estimation and correction. The proposed method also provides a novel multi-sensor integrated navigation architecture with mutually coupled errors; this architecture is beneficial in unmanned aerial vehicle navigation applications.


Author(s):  
Mohammed S. Mayeed ◽  
Gabriel Darveau

In this study a gasoline powered hexa-copter unmanned aerial vehicle (UAV) has been designed as a solution to farmers’ need for a low cost, easy to maintain, long flight duration, and multi-purpose means of specific aerial applications for insecticides and herbicides. Application of herbicides and pesticides by airplane is an example of how farmers have used technology to improve their bottom line and overall quality of life. Fields can now be sprayed in under an hour instead of consuming an entire day. However, if a producer has noxious weeds in only a small area, fixed-wing aerial application cannot be used as it is only accurate enough to do an entire field. Currently there is no solution for small scale, accurate, aerial herbicide application to meet this need. The currently available Yamaha Rmax UAV costs a tremendous amount of money and also requires a lot of money to maintain. Though it may be useful in large scale aerial spraying on the farm land, it would not be used in targeted specific areas as it is not efficient in specific applications. The gasoline powered hexacopter UAV designed in this study is a low cost solution to farmers’ need for specific aerial applications of insecticides and herbicides. The UAV design can carry 2–3 gallons of herbicide (16.7–25.0 lbs.) for a flight time of more than 30 minutes without refueling. The design could be transported in a 60.3in × 56.7in pickup bed. Structural and fatigue analyses are performed on the complete structure using state of the art software SolidWorks Simulation. The minimum factor of safety is obtained to be 10 based on maximum von Mises stress failure criteria. Under normal conditions with an estimated commercial use of 100 cycles per day it is observed that the design would survive for about 13 years without any fatigue failure. A drop test analysis is performed to ensure the design can survive a 5 feet freefall and a frequency analysis is also performed to observe the critical natural frequency of the structure. Flow simulations are performed on the 6 propellers/blades model using state of the art software SolidWorks Flow Simulation to observe the effect of vorticity interactions on the lift force. The design has been reasonably optimized based on maximizing the lift force. With this new UAV design small scale and substantial farmers could afford a personal UAV for aerial applications with a small amount of capital whose absence hindered efficient and effective specific aerial application for many years.


1999 ◽  
Vol 2 (1) ◽  
pp. 19-44 ◽  
Author(s):  
Zdobysław Goraj ◽  
Andrzej Frydrychiewicz ◽  
Jacek Winiecki

2012 ◽  
Vol 271-272 ◽  
pp. 427-431 ◽  
Author(s):  
Han Wei Hsiao ◽  
Sheng Heng Tung ◽  
Ming Hsiang Shih ◽  
Wen Pei Sung

In this study, a low-design-cost and long-endurance unmanned aerial vehicle (UAV) based on the simple microcontroller board and mini-airship technique is proposed. Many well developed positioning sensors, such as GPS, 3-axis Gyroscope, Gravity-sensor and Magnetometer are used. In addition, the control model of Proportional-Integral-Derivative controller is applied to accomplish the long endurance purpose. Such a low-cost design has the potential to accelerate the application of UAV in a variety of video monitoring fields.


2021 ◽  
Vol 1173 (1) ◽  
pp. 012055
Author(s):  
M A Moelyadi ◽  
M A Sulthoni ◽  
M F Zulkarnain ◽  
M F Akbar ◽  
B K Assakandari

Author(s):  
Ho-Joon Shim ◽  
Kyoungsik Chang ◽  
In Jae Chung ◽  
Sun-Tae Kim ◽  
Chang-Yeol Joh

2020 ◽  
Vol 32 ◽  
pp. 99-109
Author(s):  
Dimo Zafirov

The article presents an algorithm for development of a Long endurance electric multirotor unmanned aerial vehicle. Calculations for usage of different types of electric batteries have been made and dependencies of flight time for different weights of batteries have been obtained. Options for quadcopter and sixcopter have been considered.


Sign in / Sign up

Export Citation Format

Share Document