Development of a Low-Cost Unmanned Aerial Vehicle Using Mini-Airship Structure for Acquiring Digital Image Platform

2012 ◽  
Vol 271-272 ◽  
pp. 427-431 ◽  
Author(s):  
Han Wei Hsiao ◽  
Sheng Heng Tung ◽  
Ming Hsiang Shih ◽  
Wen Pei Sung

In this study, a low-design-cost and long-endurance unmanned aerial vehicle (UAV) based on the simple microcontroller board and mini-airship technique is proposed. Many well developed positioning sensors, such as GPS, 3-axis Gyroscope, Gravity-sensor and Magnetometer are used. In addition, the control model of Proportional-Integral-Derivative controller is applied to accomplish the long endurance purpose. Such a low-cost design has the potential to accelerate the application of UAV in a variety of video monitoring fields.

2018 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
Muhammad Fajar ◽  
Ony Arifianto

The autopilot on the aircraft is developed based on the mode of motion of the aircraft i.e. longitudinal and lateral-directional motion. In this paper, an autopilot is designed in lateral-directional mode for LSU-05 aircraft. The autopilot is designed at a range of aircraft operating speeds of 15 m/s, 20 m/s, 25 m/s, and 30 m/s at 1000 m altitude. Designed autopilots are Roll Attitude Hold, Heading Hold and Waypoint Following. Autopilot is designed based on linear model in the form of state-space. The controller used is a Proportional-Integral-Derivative (PID) controller. Simulation results show the value of overshoot / undershoot does not exceed 5% and settling time is less than 30 second if given step command. Abstrak Autopilot pada pesawat dikembangkan berdasarkan pada modus gerak pesawat yaitu modus gerak longitudinal dan lateral-directional. Pada makalah ini, dirancang autopilot pada modus gerak lateral-directional untuk pesawat LSU-05. Autopilot dirancang pada range kecepatan operasi pesawat yaitu 15 m/dtk, 20 m/dtk, 25 m/dtk, dan 30 m/dtk dengan ketinggian 1000 m. Autopilot yang dirancang adalah Roll Attitude Hold, Heading Hold dan Waypoint Following. Autopilot dirancang berdasarkan model linier dalam bentuk state-space. Pengendali yang digunakan adalah pengendali Proportional-Integral-Derivative (PID). Hasil simulasi menunjukan nilai overshoot/undershoot tidak melebihi 5% dan settling time kurang dari 30 detik jika diberikan perintah step.


Author(s):  
M.K. Padmanabhan ◽  
G. Santhoshkumar ◽  
Praveen Narayan ◽  
N. Jeevaraj ◽  
M. Dinesh ◽  
...  

There are various configurations and parameters that contribute to the Design of Unmanned Aerial Vehicles for specific applications. This paper deals with an innovative design of an unmanned aerial vehicle for a specified class of UAVs that require demands such as long endurance, minimized landing space with vertical take-off and landing (VTOL) capabilities. The focal point of this design is superimposing the high endurance blended wing design into tri-copter to address these parameters. The preliminary calculations are initially performed for the blended wing VTOL vehicle based on the required payload capacity and endurance. Superimposing the tri-copter will decrease the aerodynamic efficiency of the vehicle. Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical methods and algorithms to solve complex problems involving fluid flow which will effectively employed to reduce the cost and time during the conceptual and preliminary design stages. CFD analysis was carried out to estimate the major parameters like lift, drag, lift coefficient (CL) and drag coefficient (CD) for various Angle of Attack (AoA) for configurations of blended wing vehicle with and without tri-copter system in the cruise condition. Thus, the vehicle design and propulsion system is effectively optimized using this drag estimation.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4705 ◽  
Author(s):  
Adil Shah ◽  
Joseph Pitt ◽  
Khristopher Kabbabe ◽  
Grant Allen

Point-source methane emission flux quantification is required to help constrain the global methane budget. Facility-scale fluxes can be derived using in situ methane mole fraction sampling, near-to-source, which may be acquired from an unmanned aerial vehicle (UAV) platform. We test a new non-dispersive infrared methane sensor by mounting it onto a small UAV, which flew downwind of a controlled methane release. Nine UAV flight surveys were conducted on a downwind vertical sampling plane, perpendicular to mean wind direction. The sensor was first packaged in an enclosure prior to sampling which contained a pump and a recording computer, with a total mass of 1.0 kg. The packaged sensor was then characterised to derive a gain factor of 0.92 ± 0.07, independent of water mole fraction, and an Allan deviation precision (at 1 Hz) of ±1.16 ppm. This poor instrumental precision and possible short-term drifts made it non-trivial to define a background mole fraction during UAV surveys, which may be important where any measured signal is small compared to sources of instrumental uncertainty and drift. This rendered the sensor incapable of deriving a meaningful flux from UAV sampling for emissions of the order of 1 g s−1. Nevertheless, the sensor may indeed be useful when sampling mole fraction enhancements of the order of at least 10 ppm (an order of magnitude above the 1 Hz Allan deviation), either from stationary ground-based sampling (in baseline studies) or from mobile sampling downwind of sources with greater source flux than those observed in this study. While many methods utilising low-cost sensors to determine methane flux are being developed, this study highlights the importance of adequately characterising and testing all new sensors before they are used in scientific research.


10.14311/754 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
P. Kaňovský ◽  
L. Smrcek ◽  
C. Goodchild

The study described in this paper deals with the issue of a design tool for the autopilot of an Unmanned Aerial Vehicle (UAV) and the selection of the airdata and inertial system sensors. This project was processed in cooperation with VTUL a PVO o.z. [1]. The feature that distinguishes the autopilot requirements of a UAV (Figs. 1, 7, 8) from the flight systems of conventional manned aircraft is the paradox of controlling a high bandwidth dynamical system using sensors that are in harmony with the low cost low weight objectives that UAV designs are often expected to achieve. The principal function of the autopilot is flight stability, which establishes the UAV as a stable airborne platform that can operate at a precisely defined height. The main sensor for providing this height information is a barometric altimeter. The solution to the UAV autopilot design was realised with simulations using the facilities of Matlab® and in particular Simulink®[2]. 


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877993 ◽  
Author(s):  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Yuxuan Cao

In high-altitude, long-endurance unmanned aerial vehicles, a celestial attitude determination system is used to enhance the inertial navigation system (INS)/global positioning system (GPS) to achieve the required attitude performance. The traditional federal filter is not applicable for INS/GPS/celestial attitude determination system information fusion because it does not consider the mutually coupled relationship between the horizontal reference error in the celestial attitude determination system and the navigation error; this limitation results in reduced navigation accuracy. This article proposes a novel stepwise fusion algorithm with dual correction for multi-sensor navigation. Considering the horizontal reference error, the celestial attitude determination system measurement model is constructed and the issues involved in applying the federal filter are discussed. Then, preliminary error estimation and horizontal reference compensation are added to the navigation architecture. In addition, a sequential update strategy is derived to estimate the attitude error with the compensated celestial attitude determination system based on the preliminary estimation. A stepwise correction filtering algorithm with interactive preliminary and sequential updates that can effectively fuse celestial attitude determination system measurements with the INS/GPS is constructed. High-altitude, long-endurance unmanned aerial vehicle navigation in a remote sensing task is simulated to verify the performance of the proposed method. The simulation results demonstrate that the horizontal reference error is effectively compensated, and the attitude accuracy is significantly improved after stepwise error estimation and correction. The proposed method also provides a novel multi-sensor integrated navigation architecture with mutually coupled errors; this architecture is beneficial in unmanned aerial vehicle navigation applications.


2018 ◽  
Vol 159 ◽  
pp. 02045
Author(s):  
Mochammad Ariyanto ◽  
Joga D. Setiawan ◽  
Teguh Prabowo ◽  
Ismoyo Haryanto ◽  
Munadi

This research will try to design a low cost of fixed-wing unmanned aerial vehicle (UAV) using low-cost material that able to fly autonomously. Six parameters of UAV’s structure will be optimized based on basic airframe configuration, wing configuration, straight wing, tail configuration, fuselage material, and propeller location. The resulted and manufactured prototype of fixed-wing UAV will be tested in autonomous fight tests. Based on the flight test, the developed UAV can successfully fly autonomously following the trajectory command. The result shows that low-cost material can be used as a body part of fixed-wing UAV.


Sign in / Sign up

Export Citation Format

Share Document