scholarly journals The InBIO Barcoding Initiative Database: contribution to the knowledge on DNA barcodes of Iberian Plecoptera

2020 ◽  
Vol 8 ◽  
Author(s):  
Sonia Ferreira ◽  
José Manuel Tierno de Figueroa ◽  
Filipa Martins ◽  
Joana Verissimo ◽  
Lorenzo Quaglietta ◽  
...  

The use of DNA barcoding allows unprecedented advances in biodiversity assessments and monitoring schemes of freshwater ecosystems; nevertheless, it requires the construction of comprehensive reference collections of DNA sequences that represent the existing biodiversity. Plecoptera are considered particularly good ecological indicators and one of the most endangered groups of insects, but very limited information on their DNA barcodes is available in public databases. Currently, less than 50% of the Iberian species are represented in BOLD. The InBIO Barcoding Initiative Database: contribution to the knowledge on DNA barcodes of Iberian Plecoptera dataset contains records of 71 specimens of Plecoptera. All specimens have been morphologically identified to species level and belong to 29 species in total. This dataset contributes to the knowledge on the DNA barcodes and distribution of Plecoptera from the Iberian Peninsula and it is one of the IBI database public releases that makes available genetic and distribution data for a series of taxa. The species represented in this dataset correspond to an addition to public databases of 17 species and 21 BINs. Fifty-eight specimens were collected in Portugal and 18 in Spain during the period of 2004 to 2018. All specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources and their DNA barcodes are publicly available in the Barcode of Life Data System (BOLD) online database. The distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).

2020 ◽  
Vol 8 ◽  
Author(s):  
Sonia Ferreira ◽  
Rui Andrade ◽  
Ana Gonçalves ◽  
Pedro Sousa ◽  
Joana Paupério ◽  
...  

The InBIO Barcoding Initiative (IBI) Diptera 01 dataset contains records of 203 specimens of Diptera. All specimens have been morphologically identified to species level, and belong to 154 species in total. The species represented in this dataset correspond to about 10% of continental Portugal dipteran species diversity. All specimens were collected north of the Tagus river in Portugal. Sampling took place from 2014 to 2018, and specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources. This dataset contributes to the knowledge on the DNA barcodes and distribution of 154 species of Diptera from Portugal and is the first of the planned IBI database public releases, which will make available genetic and distribution data for a series of taxa. All specimens have their DNA barcodes made publicly available in the Barcode of Life Data System (BOLD) online database and the distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).


2021 ◽  
Vol 9 ◽  
Author(s):  
Pedro Sousa ◽  
José Grosso-Silva ◽  
Rui Andrade ◽  
Cátia Chaves ◽  
Joana Pinto ◽  
...  

The InBIO Barcoding Initiative (IBI) Hemiptera 01 dataset contains records of 131 specimens of Hemiptera. Most specimens have been morphologically identified to species or subspecies level and represent 88 species in total. The species of this dataset correspond to about 7.3% of continental Portuguese hemipteran species diversity. All specimens were collected in continental Portugal. Sampling took place from 2015 to 2019 and specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources. This dataset increases the knowledge on the DNA barcodes and distribution of 88 species of Hemiptera from Portugal. Six species, from five different families, were new additions to the Barcode of Life Data System (BOLD), with another twenty five species barcodes' added from under-represented taxa in BOLD. All specimens have their DNA barcodes publicly accessible through BOLD online database and the distribution data can be accessed through the Global Biodiversity Information Facility (GBIF). Eutettix variabilis and Fieberiella florii are recorded for the first time for Portugal and Siphanta acuta, an invasive species, previously reported from the Portuguese Azores archipelago, is recorded for the first time for continental Portugal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sónia Ferreira ◽  
Pjotr Oosterbroek ◽  
Jaroslav Starý ◽  
Pedro Sousa ◽  
Vanessa Mata ◽  
...  

The InBIO Barcoding Initiative (IBI) Diptera 02 dataset contains records of 412 crane fly specimens belonging to the Diptera families: Limoniidae, Pediciidae and Tipulidae. This dataset is the second release by IBI on Diptera and it greatly increases the knowledge on the DNA barcodes and distribution of crane flies from Portugal. All specimens were collected in Portugal, including six specimens from the Azores and Madeira archipelagos. Sampling took place from 2003 to 2019. Specimens have been morphologically identified to species level by taxonomists and belong to 83 species in total. The species, represented in this dataset, correspond to about 55% of all the crane fly species known from Portugal and 22% of crane fly species known from the Iberian Peninsula. All DNA extractions and most specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources. Fifty-three species were new additions to the Barcode of Life Data System (BOLD), with another 18 species' barcodes added from under-represented species in BOLD. Furthermore, the submitted sequences were found to cluster in 88 BINs, 54 of which were new to BOLD. All specimens have their DNA barcodes publicly accessible through BOLD online database and its collection data can be accessed through the Global Biodiversity Information Facility (GBIF). One species, Gonomyia tenella (Limoniidae), is recorded for the first time from Portugal, raising the number of crane flies recorded in the country to 145 species.


2021 ◽  
Author(s):  
Manuela Mejía Estrada ◽  
Luz Fernanda Jiménez-Segura ◽  
Iván Soto Calderón

The Barcoding was proposed motivated by the mismatch between the low number of taxonomists that contrasts with the large number of species, the method requires the construction of reference collections of DNA sequences that represent existing biodiversity. Freshwater fishes are key indicators for understanding biogeography around the world. Colombia with 1610 species of freshwater fishes is the second richest country in the world in this group. However, genetic information of the species continues to be limited, the contribution to a reference library of DNA barcodes for Colombian freshwater fishes highlights the importance of biological collections and seeks to strengthen inventories and taxonomy of such collections in future studies. This dataset contributes to the knowledge on the DNA barcodes and occurrence records of 96 species of Freshwater fishes from Colombia. The species represented in this dataset correspond to an addition to BOLD public databases of 39 species. Forty-nine specimens were collected in Atrato bassin and 708 in Magdalena-Cauca bassin during the period of 2010 to 2020, two species (Loricariichthys brunneus and Poecilia sphenops) are considered exotic to the Atrato, Cauca and Magdalena basins and four species (Oncorhynchu mykiss, Oreochromis niloticus, Parachromis friedrichsthalii and Xiphophorus helleri) are exotic to Colombian hydrogeographic regions. All specimens are deposited in the CIUA collection at University of Antioquia and have their DNA barcodes made publicly available in the Barcode of Life Data System (BOLD) online database and the distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).


2022 ◽  
Vol 10 ◽  
Author(s):  
Manuela Mejía-Estrada ◽  
Luz Fernanda Jiménez-Segura ◽  
Marcela Hernández-Zapata ◽  
Iván Soto Calderón

The Barcode of Life initiative was originally motivated by the large number of species, taxonomic difficulties and the limited number of expert taxonomists. Colombia has 1,610 freshwater fish species and comprises the second largest diversity of this group in the world. As genetic information continues to be limited, we constructed a reference collection of DNA sequences of Colombian freshwater fishes deposited in the Ichthyology Collection of the University of Antioquia (CIUA), thus joining the multiple efforts that have been made in the country to contribute to the knowledge of genetic diversity in order to strengthen the inventories of biological collections and facilitate the solution of taxonomic issues in the future. This study contributes to the knowledge on the DNA barcodes and occurrence records of 96 species of Colombian freshwater fishes. Fifty-seven of the species represented in this dataset were already available in the Barcode Of Life Data System (BOLD System), while 39 correspond to new species to the BOLD System. Forty-nine specimens were collected in the Atrato River Basin and 708 in the Magdalena-Cauca asin during the period 2010-2020. Two species (Loricariichthys brunneus (Hancock, 1828) and Poecilia sphenops Valenciennes, 1846) are considered exotic to the Atrato, Cauca and Magdalena Basins and four species (Oncorhynchus mykiss (Walbaum, 1792), Oreochromis niloticus (Linnaeus, 1758), Parachromis friedrichsthalii (Heckel, 1840) and Xiphophorus helleri Heckel, 1848) are exotic to the Colombian hydrogeographic regions. All specimens are deposited in CIUA and have their DNA barcodes made publicly available in the BOLD online database. The geographical distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).


2013 ◽  
Vol 64 (2) ◽  
Author(s):  
Shakina Mohd Talkah ◽  
Iylia Zulkiflee ◽  
Mohd Shahir Shamsir

Currently, all the information regarding ethnobotanical, phytochemical and pharmaceutical information of South East Asia are scattered over many different publications, depositories and databases using various digital and analogue formats. Although there are taxonomic databases of medicinal plants, they are not linked to phytochemical and pharmaceutical information which are often resides in scientific literature. We present Phyknome; an ethnobotanical and phytochemical database with more than 22,000 species of ethnoflora of Asia. The creation of this database will enable a biotechnology researcher to seek and identify ethnobotanical information based on a species’ scientific name, description and phytochemical information. It is constructed using a digitization pipeline that allow high throughput digitization of archival data, an automated dataminer to mine for pharmaceutical compounds information and an online database to integrated these information. The main functions include an automated taxonomy, bibliography and API interface with primary databases such as Global Biodiversity Information Facility (GBIF). We believe that Phyknome will contribute to the digital knowledge ecosystem to elevate access and provide tools for ethnobotanical research and contributes to the management, assessment and stewardship of biodiversity. The database is available at http://mapping.fbb.utm.my/phyknome/.


Author(s):  
Takeru Nakazato

DNA barcoding technology has become employed widely for biodiversity and molecular biology researchers to identify species and analyze their phylogeny. Recently, DNA metabarcoding and environmental DNA (eDNA) technology have developed by expanding the concept of DNA barcoding. These techniques analyze the diversity and quantity of organisms within an environment by detecting biogenic DNA in water and soil. It is particularly popular for monitoring fish species living in rivers and lakes (Takahara et al. 2012). BOLD Systems (Barcode of Life Database systems, Ratnasingham and Hebert 2007) is a database for DNA barcoding, archiving 8.5 million of barcodes (as of August 2020) along with the voucher specimen, from which the DNA barcode sequence is derived, including taxonomy, collected country, and museum vouchered as metadata (e.g. https://www.boldsystems.org/index.php/Public_RecordView?processid=TRIBS054-16). Also, many barcoding data are submitted to GenBank (Sayers et al. 2020), which is a database for DNA sequences managed by NCBI (National Center for Biotechnology Information, US). The number of the records of DNA barcodes, i.e. COI (cytochrome c oxidase I) gene for animal, has grown significantly (Porter and Hajibabaei 2018). BOLD imports DNA barcoding data from GenBank, and lots of DNA barcoding data in GenBank are also assigned BOLD IDs. However, we have to refer to both BOLD and GenBank data when performing DNA barcoding. I have previously investigated the registration of DNA barcoding data in GenBank, especially the association with BOLD, using insects and flowering plants as examples (Nakazato 2019). Here, I surveyed the number of species covered by BOLD and GenBank. I used fish data as an example because eDNA research is particularly focused on fish. I downloaded all GenBank files for vertebrates from NCBI FTP (File Transfer Protocol) sites (as of November 2019). Of the GenBank fish entries, 86,958 (7.3%) were assigned BOLD identifiers (IDs). The NCBI taxonomy database has registrations for 39,127 species of fish, and 20,987 scientific names at the species level (i.e., excluding names that included sp., cf. or aff.). GenBank entries with BOLD IDs covered 11,784 species (30.1%) and 8,665 species-level names (41.3%). I also obtained whole "specimens and sequences combined data" for fish from BOLD systems (as of November 2019). In the BOLD, there are 273,426 entries that are registered as fish. Of these entries, 211,589 BOLD entries were assigned GenBank IDs, i.e. with values in “genbank_accession” column, and 121,748 entries were imported from GenBank, i.e. with "Mined from GenBank, NCBI" description in "institution_storing" column. The BOLD data covered 18,952 fish species and 15,063 species-level names, but 35,500 entries were assigned no species-level names and 22,123 entries were not even filled with family-level names. At the species level, 8,067 names co-occurred in GenBank and BOLD, with 6,997 BOLD-specific names and 599 GenBank-specific names. GenBank has 425,732 fish entries with voucher IDs, of which 340,386 were not assigned a BOLD ID. Of these 340,386 entries, 43,872 entries are registrations for COI genes, which could be candidates for DNA barcodes. These candidates include 4,201 species that are not included in BOLD, thus adding these data will enable us to identify 19,863 fish to the species level. For researchers, it would be very useful if both BOLD and GenBank DNA barcoding data could be searched in one place. For this purpose, it is necessary to integrate data from the two databases. A lot of biodiversity data are recorded based on the Darwin Core standard while DNA sequencing data are sometimes integrated or cross-linked by RDF (Resource Description Framework). It may not be technically difficult to integrate these data, but the species data referenced differ from the EoL (The Encyclopedia of Life) for BOLD and the NCBI taxonomy for GenBank, and the differences in taxonomic systems make it difficult to match by scientific name description. GenBank has fields for the latitude and longitude of the specimens sampled, and Porter and Hajibabaei 2018 argue that this information should be enhanced. However, this information may be better described in the specimen and occurrence databases. The integration of barcoding data with the specimen and occurrence data will solve these problems. Most importantly, it will save the researcher from having to register the same information in multiple databases. In the field of biodiversity, only DNA barcode sequences may have been focused on and used as gene sequences. The museomics community regards museum-preserved specimens as rich resources for DNA studies because their biodiversity information can accompany the extraction and analysis of their DNA (Nakazato 2018). GenBank is useful for biodiversity studies due to its low rate of mislabelling (Leray et al. 2019). In the future, we will be working with a variety of DNA, including genomes from museum specimens as well as DNA barcoding. This will require more integrated use of biodiversity information and DNA sequence data. This integration is also of interest to molecular biologists and bioinformaticians.


2018 ◽  
Vol 2 ◽  
pp. e25879
Author(s):  
Anthony Adu-Gyamfi ◽  
Nick Hodgetts

There is currently limited information on plant biodiversity from Ghana. Most of the information openly available has been published by the Ghana Herbarium at the Department of Plant and Environmental Biology, University of Ghana. The Ghana Herbarium has over 100,000 specimens from Ghana and other West African countries. Of these approximately 85% of the specimen labels have been digitized. The database contains information including species names, taxonomic family, barcode number, name of collector(s), locality data, date of collection, description of species and uses of the plants. Data were captured using Botanical Research and Herbarium Management Software (BRAHMS) software and is openly available on Global Biodiversity Information Facility (GBIF) (http://www.gbif.org/country/GH/publishing). Less than 1% of the herbarium collection contains bryophyte information of Ghana. Even though bryophytes are an often overlooked flora, Ghana has a high diversity of bryophytes. Indeed Ghana has an enormous biomass of bryophytes, particularly in the humid forest areas, that is bound to contribute significantly to the water-retentive capacity of the Ghanaian forest, absorbing water quickly and releasing it slowly. It is clear that the bryophytes are an important part of the ecosystem generally, helping to stabilize the hillsides and acting as a source of water. As very little is known about Ghana's bryophyte flora, a short expedition was undertaken in the Atewa Forest in 2014. A total of 164 species were added to the herbarium collection, including about 58 new to Ghana and at least one new species (Cololejeunea sp. yet to be described). The Ghana Herbarium recognises the growing need for digitization across its collections. Data from bryophytes specimens in the Ghana Herbarium and other Ghanaian herbaria as well as other data types on Ghanaian bryophytes will need to be captured using appropriate workflows, technologies and comply with Darwin Core standards. There is also paucity of observational and bryophyte abundance data. This presentation will review the current status of biodiversity information on bryophytes from Ghana and biodiversity informatics activities at Ghana Herbarium. It will also explore ways forward for digitization which incudes capturing the information on the already existing bryophyte specimens in the Ghana Herbarium and the newly added collections using BRAHMS software.


Author(s):  
Liselott Skarp ◽  
Eveliina Päivikki Kallioniemi ◽  
Ingrid Ertshus Mathisen

Norwegian Biodiversity Information centre (NBIC) shares information about Norwegian species, habitats and ecosystems. One of the key tasks is to maintain an updated taxonomical and nomenclatural backbone “Norwegian Taxonomic backbone” (Artsnavnebase) for species. Launched in 2009, the backbone contains more than 185 000 scientific names, as well as 45 000 names in Norwegian (two languages) and Northern Sami. “Norwegian Taxonomic backbone” delivers names and taxonomic information to scientific institutions and museums across the country and is used for both management and research purposes as well as by general public. Additionally, the database has contributed more than 33500 names to the construction of the Global Biodiversity Information Facility (GBIF) taxonomy. Another major task is the Norwegian Taxonomy Initiative (NTI) which was established in 2009 with the goal of improving knowledge about Norwegian biodiversity with special emphasis on poorly known species. In addition, the surveys provide information about distributions of species in Norway and their habitat requirements. NTI collaborates with Norwegian Barcode of Life (NorBOL) and contributes into building up a comprehensive library of standardized DNA sequences (DNA barcodes) and supports research school in biosystematics (ForBio). Swedish and Norwegian taxonomy initiatives work cooperatively to increase the collective knowledge on poorly known species, and as a result, more than 3 000 species new to the country in both Sweden and Norway has been found, of which about a third being new to science. NBIC is in a process of developing and collating a trait database “Trait bank” (Egenskapsbank) for Norwegian species and habitats. Trait bank will describe and combine information about species traits on morphology, physiology and ecology etc. The aim is to also store information about Norwegian habitat types described based on Nature in Norway -system and establish the connections between habitats and species using them. Species trait data relevant for Norwegian species will be extracted from existing databases and other data sources. The first information from this work will be made available through 2020 and is going to be useful for research, conservation and area planning.


2021 ◽  
Vol 9 ◽  
Author(s):  
Leidys Murillo-Ramos ◽  
Pasi Sihvonen ◽  
Gunnar Brehm ◽  
Indiana Ríos-Malaver ◽  
Niklas Wahlberg

Molecular DNA sequence data allow unprecedented advances in biodiversity assessments, monitoring schemes and taxonomic works, particularly in poorly-explored areas. They allow, for instance, the sorting of material rapidly into operational taxonomic units (such as BINs - Barcode Index Numbers), sequences can be subject to diverse analyses and, with linked metadata and physical vouchers, they can be examined further by experts. However, a prerequisite for their exploitation is the construction of reference libraries of DNA sequences that represent the existing biodiversity. To achieve these goals for Geometridae (Lepidoptera) moths in Colombia, expeditions were carried out to 26 localities in the northern part of the country in 2015–2019. The aim was to collect specimens and sequence their DNA barcodes and to record a fraction of the species richness and occurrences in one of the most biodiversity-rich countries. These data are the beginning of an identification guide to Colombian geometrid moths, whose identities are currently often provisional only, being morpho species or operational taxonomic units (OTUs). Prior to the current dataset, 99 Geometridae sequences forming 44 BINs from Colombia were publicly available on the Barcode of Life Data System (BOLD), covering 20 species only. We enrich the Colombian Geometridae database significantly by including DNA barcodes, two nuclear markers, photos of vouchers and georeferenced occurrences of 281 specimens of geometrid moths from different localities. These specimens are classified into 80 genera. Analytical tools on BOLD clustered 157 of the mentioned sequences to existing BINs identified to species level, identified earlier by experts. Another 115 were assigned to BINs that were identified to genus or tribe level only. Eleven specimens did not match any existing BIN on BOLD and are, therefore, new additions to the database. It is likely that many BINs represent undescribed species. Nine short sequences (< 500bp) were not assigned to BINs, but identified to the lowest taxonomic category by expert taxonomists and with comparisons of type material photos. The released new genetic information will help to further progress the systematics of Geometridae. An illustrated catalogue of all new records allows validation of our identifications; it is also the first document of this kind for Colombian Geometridae. All specimens are deposited at the Museo de Zoología of Universidad de Sucre (MZUS), North Colombia. DNA BINs are reported in this study through dx.doi.org/10.5883/DS-GEOCO, the species occurrences are available on SIB Colombia https://sibcolombia.net/ and the Global Biodiversity Information Facility (GBIF) https://www.gbif.org/ through https://doi.org/10.15472/ucfmkh.


Sign in / Sign up

Export Citation Format

Share Document