scholarly journals Genomic in situ hybridization in interspecific hybrids of scallops (Bivalvia, Pectinidae) and localization of the satellite DNA Cf303, and the vertebrate telomeric sequences (TTAGGG)n on chromosomes of scallop Chlamys farreri (Jones & Preston, 1904)

2018 ◽  
Vol 12 (1) ◽  
pp. 83-95
Author(s):  
Liping Hu ◽  
Liming Jiang ◽  
Ke Bi ◽  
Huan Liao ◽  
Zujing Yang ◽  
...  

Mitotic chromosome preparations of the interspecific hybrids Chlamysfarreri (Jones & Preston, 1904) × Patinopectenyessoensis (Jay, 1857), C.farreri × Argopectenirradinas (Lamarck, 1819) and C.farreri × Mimachlamysnobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C.farreri and the vertebrate telomeric (TTAGGG)n sequences were used to map mitotic chromosomes of C.farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C.farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs.

2016 ◽  
Vol 148 (2-3) ◽  
pp. 211-226 ◽  
Author(s):  
Michael Schmid ◽  
Claus Steinlein

The mitotic chromosomes of 4 anuran species were examined by various classical banding techniques and by fluorescence in situ hybridization using a (TTAGGG)n repeat. Large intrachromosomal telomeric sequences (ITSs) were demonstrated in differing numbers and chromosome locations. A detailed comparison of the present results with numerous published and unpublished data allowed a consistent classification of the various categories of large ITSs present in the genomes of anurans and other vertebrates. The classification takes into consideration the total numbers of large ITSs in the karyotypes, their chromosomal locations and their specific distribution patterns. A new category of large ITSs was recognized to exist in anuran species. It consists of large clusters of ITSs located in euchromatic chromosome segments, which is in clear contrast to the large ITSs in heterochromatic chromosome regions known in vertebrates. The origin of the different categories of large ITSs in heterochromatic and euchromatic chromosome regions, their mode of distribution in the karyotypes and evolutionary fixation in the genomes, as well as their cytological detection are discussed.


2006 ◽  
Vol 151 (2) ◽  
pp. 577-594 ◽  
Author(s):  
Pierrick Bocher ◽  
Theunis Piersma ◽  
Anne Dekinga ◽  
Casper Kraan ◽  
Michael G. Yates ◽  
...  

Genome ◽  
2009 ◽  
Vol 52 (4) ◽  
pp. 361-380 ◽  
Author(s):  
Grit Winterfeld ◽  
Elke Döring ◽  
Martin Röser

Karyotype structures revealed by in situ hybridization with ribosomal and satellite DNAs and fluorochrome staining of AT- or GC-rich regions are reported for 23 diploid to tetraploid taxa of Aveneae genera Arrhenatherum , Avena , Helictotrichon , and Pseudarrhenatherum . Chromosomal features are compared with a molecular phylogeny generated on nuclear ribosomal (ITS, 5S) and chloroplast (matK) DNA sequences. Ancestral chromosomal character states are (1) two satellite chromosomes per set of x = 7, (2) 5S rDNA localized in nonsatellite chromosomes, (3) large chromosomes with (4) rather equal lengths of their respective chromosome arms, (5) sets with strong variance of chromosome lengths, (6) absence or small amounts of heterochromatin, and (7) absence or no detectable amplification of the satellite DNAs tested. Overall, most karyotype characteristics are species specific, but common patterns were found for the species of two large subgenera of Helictotrichon. Pseudarrhenatherum, although nested in the molecular phylogeny within Helictotrichon subgenus Helictotrichon, deviates strongly in karyotype characters such as Arrhenatherum as sister of Avena. The karyotype of Helictotrichon jahandiezii , sister to the clade of Helictotrichon subgenera Helictotrichon, Avena, and Arrhenatherum, strongly resembles that of Avena macrostachya . Karyotype features suggest that perennial A. macrostachya and H. jahandiezii are close to the C-genome species of annual Avena, whereas the Avena A genome resembles that of Arrhenatherum.


1981 ◽  
Vol 37 (2) ◽  
pp. 209-214 ◽  
Author(s):  
W. J. Peacock ◽  
R. Appels ◽  
S. Endow ◽  
D. Glover

SUMMARYThe major type I insert sequence for the 28S rRNA genes of Drosophila melanogaster has been mapped within the chromosomes using a probe synthesized from a cloned sequence containing the entire 5·4 kb segment. The genomic distribution was shown to be complex in that the insert sequence occurred next to many different types of sequences, in addition to occurring as an insert in the 28S rRNA genes of the X chromosome. In situ hybridization of mitotic chromosomes showed most of the insert units not contained in the ribosomal genes to be located near the ribosomal gene cluster on the X chromosome. Additional sites were detected in polytene chromosomes in region 102C, 8–12 and in the hetero-chromatin of the autosomes.


2000 ◽  
Vol 151 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Edgar Trelles-Sticken ◽  
Michael E. Dresser ◽  
Harry Scherthan

We have investigated the requirements for NDJ1 in meiotic telomere redistribution and clustering in synchronized cultures of Saccharomyces cerevisiae. On induction of wild-type meiosis, telomeres disperse from premeiotic aggregates over the nuclear periphery, and then cluster near the spindle pole body (bouquet arrangement) before dispersing again. In ndj1Δ meiocytes, telomeres are scattered throughout the nucleus and fail to form perinuclear meiosis-specific distribution patterns, suggesting that Ndj1p may function to tether meiotic telomeres to the nuclear periphery. Since ndj1Δ meiocytes fail to cluster their telomeres at any prophase stage, Ndj1p is the first protein shown to be required for bouquet formation in a synaptic organism. Analysis of homologue pairing by two-color fluorescence in situ hybridization with cosmid probes to regions on III, IX, and XI revealed that disruption of bouquet formation is associated with a significant delay (>2 h) of homologue pairing. An increased and persistent fraction of ndj1Δ meiocytes with Zip1p polycomplexes suggests that chromosome polarization is important for synapsis progression. Thus, our observations support the hypothesis that meiotic telomere clustering contributes to efficient homologue alignment and synaptic pairing. Under naturally occurring conditions, bouquet formation may allow for rapid sporulation and confer a selective advantage.


Genetics ◽  
1995 ◽  
Vol 139 (2) ◽  
pp. 659-670 ◽  
Author(s):  
P Zhang ◽  
A C Spradling

Abstract Peri-centromeric regions of Drosophila melanogaster chromosomes appear heterochromatic in mitotic cells and become greatly underrepresented in giant polytene chromosomes, where they aggregate into a central mass called the chromocenter. We used P elements inserted at sites dispersed throughout much of the mitotic heterochromatin to analyze the fate of 31 individual sites during polytenization. Analysis of DNA sequences flanking many of these elements revealed that middle repetitive or unique sequence DNAs frequently are interspersed with satellite DNAs in mitotic heterochromatin. All nine Y chromosome sites tested were underrepresented > 20-fold on Southern blots of polytene DNA and were rarely or never detected by in situ hybridization to salivary gland chromosomes. In contrast, nine tested insertions in autosomal centromeric heterochromatin were represented fully in salivary gland DNA, despite the fact that at least six were located proximal to known blocks of satellite DNA. The inserted sequences formed diverse, site-specific morphologies in the chromocenter of salivary gland chromosomes, suggesting that domains dispersed at multiple sites in the centromeric heterochromatin of mitotic chromosomes contribute to polytene beta-heterochromatin. We suggest that regions containing heterochromatic genes are organized into dispersed chromatin configurations that are important for their function in vivo.


Genome ◽  
1992 ◽  
Vol 35 (5) ◽  
pp. 844-848 ◽  
Author(s):  
Joanna E. Werner ◽  
Rama S. Kota ◽  
Bikram S. Gill ◽  
T. R. Endo

The distribution of the telomeric repeats in common wheat and their role in the healing of broken ends of deleted chromosomes was studied. In situ hybridization to mitotic chromosomes was carried out using a synthetic probe that was derived from the sequence of the telomeric repeats of Arabidopsis thaliana. Sites of hybridization were visualized as double dots at both ends of each wheat chromosome. Variation in the strength of the signal that was detected among chromosome arms might be due to the variable number of telomeric repeats of each chromosome end. While signals were absent on normal chromosomes at the pericentric and intercalary regions, hybridization sites were detected at the broken chromosome ends of all deleted chromosomes included in the study. All telocentric chromosomes of multitelocentric lines of 'Chinese Spring' showed a strong signal at the centromeric region. The results suggest that a de novo chromosome healing mechanism exists in wheat involving the addition of the telomeric sequences to the ends of broken chromosome. Further evidence indicated that the healing of broken ends is probably intrinsic to replication during gametogenesis.Key words: in situ hybridization, telomeric sequences, deleted chromosomes, chromosome healing, telosome.


Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 133-136
Author(s):  
Marta Dobrzanska ◽  
Elzbieta Kraszewska ◽  
Maria Bucholc ◽  
Glyn Jenkins

A cloned genomic DNA fragment (pTa241) formerly derived from a DNA fraction obtained from isolated nuclei of embryos of a Polish cultivar of wheat (Triticum aestivum cv. Begra) comprises a tandem repeat of the telomeric array CCCTAAA, and hybridizes in situ exclusively to the telomeres of all chromosome arms of the somatic chromosome complement of wheat. A second cloned fragment (pTa637) derived from the same fraction is 637 bp long, flanked by 28 bp of the same telomeric repeat unit, and hybridizes in situ to the entire lengths of all the chromosomes of the complement. The same pattern of hybridization was observed when the flanking telomeric sequences were removed. A third DNA fragment (pTa1439), derived from unfractionated genomic DNA and flanked with 62 bp of the same telomeric unit, showed the same patterns of distribution. Together with additional evidence from Southern analysis, these observations were interpreted to mean that these sequences are associated with mobile DNA elements and are distributed widely throughout the genome. The chromosomal distribution of the non-telomeric parts of the clones is consistent with the dispersed genomic distribution characteristic of transposons and retroelements.Key words: wheat, Triticum aestivum cv. Begra, mobile elements, telomeric DNA sequence, FISH.


Genome ◽  
2017 ◽  
Vol 60 (3) ◽  
pp. 216-227 ◽  
Author(s):  
Araceli Fominaya ◽  
Yolanda Loarce ◽  
Alexander Montes ◽  
Esther Ferrer

Fluorescence in situ hybridization (FISH) was used to determine the physical location of the (AC)10 microsatellite in metaphase chromosomes of six diploid species (AA or CC genomes), two tetraploid species (AACC genome), and five cultivars of two hexaploid species (AACCDD genome) of the genus Avena, a genus in which genomic relationships remain obscure. A preferential distribution of the (AC)10 microsatellite in the pericentromeric and interstitial regions was seen in both the A- and D-genome chromosomes, while in C-genome chromosomes the majority of signals were located in the pericentromeric heterochromatic regions. New large chromosome rearrangements were detected in two polyploid species: an intergenomic translocation involving chromosomes 17AL and 21DS in Avena sativa ‘Araceli’ and another involving chromosomes 4CL and 21DS in the analyzed cultivars of Avena byzantina. The latter 4CL-21DS intergenomic translocation differentiates clearly between A. sativa and A. byzantina. Searches for common hybridization patterns on the chromosomes of different species revealed chromosome 10A of Avena magna and 21D of hexaploid oats to be very similar in terms of the distribution of 45S and Am1 sequences. This suggests a common origin for these chromosomes and supports a CCDD rather than an AACC genomic designation for this species.


2020 ◽  
Vol 14 (1) ◽  
pp. 27-42
Author(s):  
Alber Sousa Campos ◽  
Ramon Marin Favarato ◽  
Eliana Feldberg

The karyotypes and chromosomal characteristics of three Acestrorhynchus Eigenmann et Kennedy, 1903 species were examined using conventional and molecular protocols. These species had invariably a diploid chromosome number 2n = 50. Acestrorhynchus falcatus (Block, 1794) and Acestrorhynchus falcirostris (Cuvier, 1819) had the karyotype composed of 16 metacentric (m) + 28 submetacentric (sm) + 6 subtelocentric (st) chromosomes while Acestrorhynchus microlepis (Schomburgk, 1841) had the karyotype composed of 14m+30sm+6st elements. In this species, differences of the conventional and molecular markers between the populations of Catalão Lake (AM) and of Apeu Stream (PA) were found. Thus the individuals of Pará (Apeu) were named Acestrorhynchus prope microlepis. The distribution of the constitutive heterochromatin blocks was species-specific, with C-positive bands in the centromeric and telomeric regions of a number of different chromosomes, as well as in interstitial sites and completely heterochromatic arms. The phenotypes of nucleolus organizer region (NOR) were simple, i. e. in a terminal position on the p arm of pair No. 23 except in A. microlepis, in which it was located on the q arm. Fluorescence in situ hybridization (FISH) revealed 18S rDNA sites on one chromosome pair in karyotype of A. falcirostris and A. prope microlepis (pair No. 23) and three pairs (Nos. 12, 23, 24) in A. falcatus and (Nos. 8, 23, 24) in A. microlepis; 5S rDNA sites were detected in one chromosome pair in all three species. The mapping of the telomeric sequences revealed terminal sequences in all the chromosomes, as well as the presence of interstitial telomeric sequences (ITSs) in a number of chromosome pairs. The cytogenetic data recorded in the present study indicate that A. prope microlepis may be an unnamed species.


Sign in / Sign up

Export Citation Format

Share Document