scholarly journals Opening data and research objects in viticulture: The Viticulture Data Journal (VDJ)

2019 ◽  
Vol 1 ◽  
Author(s):  
Lyubomir Penev ◽  
Maritina Stavrakaki ◽  
Teodor Georgiev ◽  
Leonardo Candela ◽  
Stefano Poni ◽  
...  

The Viticulture Data Journal (VDJ) is launched with the aim of offering a publication venue for non-conventional but valuable outputs of the research cycle: data, models, methods, software, data analytics pipelines and visualisation methods in viticultural research. VDJ is published on the ARPHA journal platform, which supports the full life cycle of a manuscript, from writing through submission, peer review, publication and dissemination within a single online collaborative platform. During the AGINFRA+ project, which has supported the journal launch, ARPHA has been extended to be used from the AGINFRA+ Virtual Research Environment (VRE).

2019 ◽  
Vol 1 ◽  
Author(s):  
Matthias Filter ◽  
Leonardo Candela ◽  
Laurent Guillier ◽  
Maarten Nauta ◽  
Teodor Georgiev ◽  
...  

This Editorial describes the rationale, focus, scope and technology behind the newly launched, open access, innovative Food Modelling Journal (FMJ). The Journal is designed to publish those outputs of the research cycle that usually precede the publication of the research article, but have their own value and re-usability potential. Such outputs are methods, models, software and data. The Food Modelling Journal is launched by the AGINFRA+ community and is integrated with the AGINFRA+ Virtual Research Environment (VRE) to facilitate and streamline the authoring, peer review and publication of the manuscripts via the ARPHA Publishing Platform.


2022 ◽  
Vol 162 ◽  
pp. 108054
Author(s):  
Xiaoshu Qin ◽  
Chang Peng ◽  
Gaozheng Zhao ◽  
Zengye Ju ◽  
Shanshan Lv ◽  
...  

2014 ◽  
Vol 968 ◽  
pp. 218-221
Author(s):  
Xia Liu ◽  
Hong Qi Luo ◽  
Rui Fu ◽  
He Liang Song

Household electric blankets are widely used in China, but the problem of quality and safety is also more prominent, which is a serious threat to the health and safety of consumers. The structure characteristics and working principle of household electric blanket are analyzed. The hazards in the each stage of full life cycle are identified, including the stages of designing, manufacturing, packaging, transporting, utilizing and recycling. Hazard identification of each stage is made with methods of scenario analysis, safety check list, fault hypothesis analysis, hazard and operability analysis, failure mode and effect analysis and fault tree analysis, respectively.


2007 ◽  
Vol 64 (7) ◽  
pp. 1491-1498 ◽  
Author(s):  
Mårten Åström ◽  
Willem Dekker

Abstract Åström M., and Dekker W. 2007. When will the eel recover? A full life-cycle model. – ICES Journal of Marine Science, 64: 000–000: –. The European eel population has declined over the past decades in most of its distribution area, and the stock is outside safe biological limits. The EU has taken up the challenge to design a management system that ensures the escapement of 40% of spawning-stock biomass, relative to unexploited, unpolluted circumstances in unobstructed rivers. This ultimately aims to restore the spawning stock to a level at which glass eel production is not impaired, i.e. to restore to full historical glass eel recruitment. To explore the trajectory from the current depleted state to full recruitment recovery, we developed a simple model of stock dynamics, based on a simplified stock–recruitment relationship and the conventional dynamic pool assumptions. Recruitment trajectories under different future fishery regimes are explored, for the medium (one generation time) and long time-span (until full recruitment recovery). Reducing fisheries to zero, recovery is expected within ∼80 years, whereas under an ultimately sustainable fishing regime of just 10% of the current rate of fishing mortality, recovery may take more than 200 years. Moreover, management regimes, apparently leading to slight recovery of the stock in the coming 5–15 years, might still be unsustainable in the long run.


Author(s):  
Dominique Roddier ◽  
Christian Cermelli ◽  
Alexia Aubault ◽  
Antoine Peiffer

The WindFloat prototype is a semisubmersible type foundation supporting a 2 MW, 3 bladed, horizontal axis Vestas V-80 turbine. The 8-year project is near its completion. After 3 years of planning, engineering and fabrication, the prototype was installed in 2011 in the northern Portugal Atlantic waters. Following 5 years of operations and electricity production, the unit was decommissioned in the summer of 2016. This paper retraces the prototype project going back to the early objectives, focusing on its 5-year performance and lessons learned. The overall assessment of the impact of the prototype on the incoming pre-commercial projects is discussed. Some emphasis is placed on both the decommissioning of the unit and the economics of the project, as these have not yet been published.


Sign in / Sign up

Export Citation Format

Share Document