scholarly journals The complete mitochondrial genome of Pentatoma rufipes (Hemiptera, Pentatomidae) and its phylogenetic implications

ZooKeys ◽  
2021 ◽  
Vol 1042 ◽  
pp. 51-72
Author(s):  
Ling Zhao ◽  
Jiufeng Wei ◽  
Wanqing Zhao ◽  
Chao Chen ◽  
Xiaoyun Gao ◽  
...  

Pentatoma rufipes (Linnaeus, 1758) is an important agroforestry pest widely distributed in the Palaearctic region. In this study, we sequence and annotate the complete mitochondrial genome of P. rufipes and reconstruct the phylogenetic trees for Pentatomoidea using existing data for eight families published in the National Center for Biotechnology Information database. The mitogenome of P. rufipes is 15,887-bp-long, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region, with an A+T content of 77.7%. The genome structure, gene order, nucleotide composition, and codon usage of the mitogenome of P. rufipes were consistent with those of typical Hemiptera insects. Among the protein-coding genes of Pentatomoidea, the evolutionary rate of ATP8 was the fastest, and COX1 was found to be the most conservative gene in the superfamily. Substitution saturation assessment indicated that neither transition nor transversion substitutions were saturated in the analyzed datasets. Phylogenetic analysis using the Bayesian inference method showed that P. rufipes belonged to Pentatomidae. The node support values based on the dataset concatenated from protein-coding and RNA genes were the highest. Our results enrich the mitochondrial genome database of Pentatomoidea and provide a reference for further studies of phylogenetic systematics.

ZooKeys ◽  
2020 ◽  
Vol 945 ◽  
pp. 1-16
Author(s):  
Yuan-An Wu ◽  
Jin-Wei Gao ◽  
Xiao-Fei Cheng ◽  
Min Xie ◽  
Xi-Ping Yuan ◽  
...  

Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (–0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.


2019 ◽  
Vol 30 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Y. Cao ◽  
J. Liu ◽  
S. Zhou ◽  
Y. Chen ◽  
X. Wan

The complete mitochondrial genome of a Chinese stag beetle, Prismognathus prossi, was generated using the Illumina next-generation sequencing. The mitogenome sequence is 15,984 bp in length, the nucleotide composition isA 36.6%, C17.5%, T34.3% andG11.6%with theAT-content of 70.9%. The sequence has similar features with other reported insectmitogenomes, consisting of 13 proteincoding genes (PCGs), 22 transferRNAgenes, tworibosomalRNAsand a control region. All of the protein-coding genes start with the typicalATNinitiation codon except for COI. Maximum Likelihood (ML) and Bayesian Inference (BI) indicated that P. prossi share an affinity with Lucanus mazama, Lucanus fortunei and Cyclommatus vitalisi.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Zhaoqing Han ◽  
Kun Li ◽  
Houqiang Luo ◽  
Muhammad Shahzad ◽  
Khalid Mehmood

A study was conducted to reveal the characterization of the complete mitochondrial genome of Fischoederius elongatus derived from cows in Shanghai, China. Results indicated that the complete mt genome of F. elongatus was 14,288 bp and contained 12 protein-coding genes (cox1-3, nad1-6, nad4L, atp6, and cytb), 22 transfer RNA genes, and two ribosomal RNA genes (l-rRNA and s-rRNA). The overall A + T content of the mt genome was 63.83%, and the nucleotide composition was A (19.83%), C (9.75%), G (26.43%), and T (44.00%). A total of 3284 amino acids were encoded by current F. elongatus isolate mt genome, TTT (Phe) (9.84%) and TTG (Leu) (7.73%) codon were the most frequent amino acids, whereas the ACC (Thr) (0.06%), GCC (Ala) (0.09%), CTC (Leu) (0.09%), and AAC (Asn) (0.09%) codon were the least frequent ones. At the third codon position of F. elongatus mt protein genes, T (50.82%) was observed most frequently and C (5.85%) was the least one. The current results can contribute to epidemiology diagnosis, molecular identification, taxonomy, genetic, and drug development researches about this parasite species in cattle.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8274 ◽  
Author(s):  
Dan Chen ◽  
Jing Liu ◽  
Luca Bartolozzi ◽  
Xia Wan

Background The stag beetle Lucanus cervus (Coleoptera: Lucanidae) is widely distributed in Europe. Habitat loss and fragmentation has led to significant reductions in numbers of this species. In this study, we sequenced the complete mitochondrial genome of L. cervus and reconstructed phylogenetic relationships among Lucanidae using complete mitochondrial genome sequences. Methods Raw data sequences were generated by the next generation sequencing using Illumina platform from genomic DNA of L. cervus. The mitochondrial genome was assembled by IDBA and annotated by MITOS. The aligned sequences of mitochondrial genes were partitioned using PartitionFinder 2. Phylogenetic relationships among 19 stag beetle species were constructed using Maximum Likelihood (ML) method implemented in IQ-TREE web server and Bayesian method implemented in PhyloBayes MPI 1.5a. Three scarab beetles were used as outgroups. Results The complete mitochondrial genome of L. cervus is 20,109 bp in length, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNAs and a control region. The A + T content is 69.93% for the majority strand. All protein-coding genes start with the typical ATN initiation codons except for cox1, which uses AAT. Phylogenetic analyses based on ML and Bayesian methods shown consistent topologies among Lucanidae.


2018 ◽  
Vol 63 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Kun Li ◽  
Muhammad Shahzad ◽  
Hui Zhang ◽  
Khalid Mehmood ◽  
Xiong Jiang ◽  
...  

AbstractThe present study was designed to determine and analyze themtgenomes ofMetastrongylus salmi(M.salmi), and reveal the phylogenetic relationships of this parasite usingmtDNA sequences. Results showed that the completemtgenome ofM.salmiwas 13722 bp containing 12 protein-coding genes (cox1-3, nad1-6, nad4L, atp6 and cytb), 22 transfer RNA genes, and 2 ribosomal RNA genes (rrnL and rrnS). The overall A+T content was 73.54% and the nucleotide composition was A (23.52%), C (6.14%), G (19.60%), T (50.02%), and N (UCAG) (0.73%). A total of 4237 amino acids are encoded from the Tibetan isolates ofM. salmi mtgenomes. The ATA was predicted as the most common starting codon with 41.7% (5/12 protein genes); and 11 of the 12 protein genes were found to have a TAG or TAA translation termination codon. By clustering together the phylogenetic trees of TibetanM.salmiand AustrianM.salmi, theM.salmiisolated from Tibetan pigs was found to be highly homological with that stemmed from Austrian one. This information provides meaningful insights into the phylogenetic position of theM.salmiChina isolate and represents a useful resource for selecting molecular markers for diagnosis and population studies.


2015 ◽  
Vol 63 (2) ◽  
pp. 111 ◽  
Author(s):  
Anna J. MacDonald ◽  
Theresa Knopp ◽  
Mitzy Pepper ◽  
J. Scott Keogh ◽  
Stephen D. Sarre

The Pygopodidae comprise an enigmatic group of legless lizards endemic to the Australo-Papuan region. Here we present the first complete mitochondrial genome for a member of this family, Aprasia parapulchella, from Australia. The mitochondrial genome of A. parapulchella is 16 528 base pairs long and contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes and the control region, conforming to the typical vertebrate gene order. The overall mitochondrial nucleotide composition is 31.7% A, 24.5% T, 30.5% C and 13.2% G. This corresponds to a total A+T content of 56.3%, which is similar to that of other squamate lizard genomes.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 769
Author(s):  
Pattayampadam Ramakrishnan Shidhi ◽  
Vadakkemukadiyil Chellappan Biju ◽  
Sasi Anu ◽  
Chandrasekharan Laila Vipin ◽  
Kumar Raveendran Deelip ◽  
...  

Mitogenome sequencing provides an understanding of the evolutionary mechanism of mitogenome formation, mechanisms driving plant gene order, genome structure, and migration sequences. Data on the mitochondrial genome for family Convolvulaceae members is lacking. E. alsinoides, also known as shankhpushpi, is an important medicinal plant under the family Convolvulaceae, widely used in the Ayurvedic system of medicine. We identified the mitogenome of E. alsinoides using the Illumina mate-pair sequencing platform, and annotated using bioinformatics approaches in the present study. The mitogenome of E. alsinoides was 344184 bp in length and comprised 46 unique coding genes, including 31 protein-coding genes (PCGs), 12 tRNA genes, and 3 rRNA genes. The secondary structure of tRNAs shows that all the tRNAs can be folded into canonical clover-leaf secondary structures, except three trnW, trnG, and trnC. Measurement of the skewness of the nucleotide composition showed that the AT and GC skew is positive, indicating higher A’s and G’s in the mitogenome of E. alsinoides. The Ka/Ks ratios of 11 protein-coding genes (atp1, ccmC, cob, cox1, rps19, rps12, nad3, nad9, atp9, rpl5, nad4L) were <1, indicating that these genes were under purifying selection. Synteny and gene order analysis were performed to identify homologous genes among the related species. Synteny blocks representing nine genes (nad9, nad2, ccmFc, nad1, nad4, nad5, matR, cox1, nad7) were observed in all the species of Solanales. Gene order comparison showed that a high level of gene rearrangement has occurred among all the species of Solanales. The mitogenome data obtained in the present study could be used as the Convolvulaceae family representative for future studies, as there is no complex taxonomic history associated with this plant.


ZooKeys ◽  
2020 ◽  
Vol 1005 ◽  
pp. 57-72
Author(s):  
I-Chen Wang ◽  
Hung-Du Lin ◽  
Chih-Ming Liang ◽  
Chi-Chun Huang ◽  
Rong-Da Wang ◽  
...  

The cyprinid genus Onychostoma Günther, 1896 consists of 24 valid species distributed in Southeast Asia, including Taiwan, Hainan, mainland China and the Indochina region. In the present study, we determined the complete mitochondrial genome of O. lepturum, which is 16,598 bp in length, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region (D-loop). To verify the molecular phylogeny of the subfamily Acrossocheilinae, we provide new insights to better understand the taxonomic status of Acrossocheilus, Onychostoma and Folifer brevifilis. The phylogenetic trees presented three major clades based on the 13 protein-coding genes from 28 Acrossocheilinae species. Clades I and II represent the Onychostoma and Acrossocheilus groups, respectively. Species of Acrossocheilus, Onychostoma and F. brevifilis are included in Clade III, which is considered as an ancestral group. This work provides genomic variation information and improves our understanding of the Acrossocheilinae mitogenome, which will be most valuable in providing new insights for phylogenetic analysis and population genetics research.


ZooKeys ◽  
2019 ◽  
Vol 879 ◽  
pp. 137-156
Author(s):  
Mingsheng Yang ◽  
Bingyi Hu ◽  
Lin Zhou ◽  
Xiaomeng Liu ◽  
Yuxia Shi ◽  
...  

The complete mitochondrial genome (mitogenome) of Yponomeuta montanatus is sequenced and compared with other published yponomeutoid mitogenomes. The mitogenome is circular, 15,349 bp long, and includes the typical metazoan mitochondrial genes (13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes) and an A + T-rich region. All 13 protein-coding genes use a typical start codon ATN, the one exception being cox1, which uses CGA across yponomeutoid mitogenomes. Comparative analyses further show that the secondary structures of tRNAs are conserved, including loss of the Dihydorouidine (DHU) arm in trnS1 (AGN), but remarkable nucleotide variation has occurred mainly in the DHU arms and pseudouridine (TψC) loops. A + T-rich regions exhibit substantial length variation among yponomeutoid mitogenomes, and conserved sequence blocks are recognized but some of them are not present in all species. Multiple phylogenetic analyses confirm the position of Y. montanatus in Yponomeutoidea. However, the superfamily-level relationships in the Macroheterocera clade in Lepidoptera recovered herein show considerable difference with that recovered in previous mitogenomic studies, raising the necessity of extensive phylogenetic investigation when more mitogenomes become available for this clade.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6131 ◽  
Author(s):  
Shiyu Du ◽  
Gengyun Niu ◽  
Tommi Nyman ◽  
Meicai Wei

We describeArge bellaWei & Du sp. nov., a large and beautiful species of Argidae from south China, and report its mitochondrial genome based on high-throughput sequencing data. We present the gene order, nucleotide composition of protein-coding genes (PCGs), and the secondary structures of RNA genes. The nearly complete mitochondrial genome ofA. bellahas a length of 15,576 bp and a typical set of 37 genes (22 tRNAs, 13 PCGs, and 2 rRNAs). Three tRNAs are rearranged in theA. bellamitochondrial genome as compared to the ancestral type in insects:trnMandtrnQare shuffled, whiletrnWis translocated from thetrnW-trnC-trnYcluster to a location downstream oftrnI. All PCGs are initiated by ATN codons, and terminated with TAA, TA or T as stop codons. All tRNAs have a typical cloverleaf secondary structure, except fortrnS1. H821 ofrrnSand H976 ofrrnLare redundant. A phylogenetic analysis based on mitochondrial genome sequences ofA. bella, 21 other symphytan species, two apocritan representatives, and four outgroup taxa supports the placement of Argidae as sister to the Pergidae within the symphytan superfamily Tenthredinoidea.


Sign in / Sign up

Export Citation Format

Share Document