scholarly journals Characterization of the complete mitochondrial genome of Brentisentis yangtzensis Yu & Wu, 1989 (Acanthocephala, Illiosentidae)

ZooKeys ◽  
2019 ◽  
Vol 861 ◽  
pp. 1-14
Author(s):  
Rui Song ◽  
Dong Zhang ◽  
Jin-Wei Gao ◽  
Xiao-Fei Cheng ◽  
Min Xie ◽  
...  

The mitogenome of Brentisentisyangtzensis is 13,864 bp in length and has the circular structure typical of metazoans. It contains 36 genes: 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and 12 protein-encoding genes (PCGs). All genes are transcribed from the same strand. Thirteen overlapping regions were found in the mitochondrial genome. The overall A+T content of B.yangtzensis is 68.3% versus 31.7% of G+C content (A = 27.8%, T = 40.5%, C = 9.0%, G = 22.7%). B.yangtzenensis (Illiosentidae) and Leptorhynchoidesthecatus (Rhadinorhynchidae) form a sister clade, showing the relatively close relationship between the Illiosentidae and the Rhadinorhynchidae. The mitochondrial gene arrangements of acanthocephalan species are relatively conserved, with only a few translocations of tRNAs (trnS1, trnS2, trnV, and trnK) detected. An identical gene order was found both in a sister clade (Centrorhynchusaluconis and Plagiorhynchustransversus) and across different classes (B.yangtzensis (Palaeacanthocephala), Acanthosentischeni (Eoacanthocephala) and Macracanthorhynchushirudinaceus (Archiacanthocephala), Oncicolaluehei and L.thecatus (Palaeacanthocephala)). More studies and more sequences of acanthocephalan species are needed to gain a clear understanding of the phylogenetic relationships.

Zootaxa ◽  
2017 ◽  
Vol 4329 (6) ◽  
pp. 574
Author(s):  
HYUNG JIK WOO ◽  
ANH D. NGUYEN ◽  
KUEM HEE JANG ◽  
EUN HWA CHOI ◽  
SHI HYUN RYU ◽  
...  

The millipede Anaulaciulus koreanus (Verhoeff, 1937), belonging to the family Julidae, is an endemic species of the Korean fauna. In this study, we sequence and annotate the mitochondrial genome of A. koreanus. The complete mitochondrial genome of this species is 14,916 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes (16S and 12S rRNA), and a large non-coding region. The genome has a very high A+T content (71.1%), less than of the species Brachycybe lecontii Wood, 1864 (order Platydesmida; 76.6%) and Sphaerotheriidae sp. (order Sphaerotheriida; 71.2%). In comparison with the mitochondrial gene arrangement of eight other millipede species, the whole mitochondrial gene arrangement of A. koreanus is most similar to the nemasomatid species, Antrokoreana gracilipes Verhoeff, 1938, but differs from those of the other diplopod orders. The absence of tRNACys between the ND2 and COI regions is unique to the order Polydesmida, whereas the translocation of tRNATyr to between ND2 and COI is exclusive to the Sphaerotheriida. It is also shown that the translocation of tRNAThr between ND4L and ND1 may be a synapomorphy to support a close relationship of two orders Spirobolida and Spirostreptida. 


ZooKeys ◽  
2020 ◽  
Vol 991 ◽  
pp. 69-83
Author(s):  
Lu Qi ◽  
Lingfeng Kong ◽  
Qi Li

In this study, Stenothyra glabra belonging to the truncatelloid family Stenothyridae is redescribed using morphological characters from the shell, operculum, and radula. The species is distinguished from other species in the group by its shell without spotted spiral lines and by its dome-shaped, mostly smooth, protoconch with some pits. Together with the morphological description, the complete mitogenome for the species is provided, which fill a knowledge gap in Stenothyridae. The mitogenome of S. glabra is 15,830 bp in length and has a circular structure. It contains 37 genes: 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and 13 protein-encoding genes (PCGs). The overall A+T content of the mitogenome is 68.9%. Molecular phylogenetic analysis and COI sequence divergence separate S. glabra from its congeners and show that S. glabra and S. cf. divalis form a sister clade.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Zhaoqing Han ◽  
Kun Li ◽  
Houqiang Luo ◽  
Muhammad Shahzad ◽  
Khalid Mehmood

A study was conducted to reveal the characterization of the complete mitochondrial genome of Fischoederius elongatus derived from cows in Shanghai, China. Results indicated that the complete mt genome of F. elongatus was 14,288 bp and contained 12 protein-coding genes (cox1-3, nad1-6, nad4L, atp6, and cytb), 22 transfer RNA genes, and two ribosomal RNA genes (l-rRNA and s-rRNA). The overall A + T content of the mt genome was 63.83%, and the nucleotide composition was A (19.83%), C (9.75%), G (26.43%), and T (44.00%). A total of 3284 amino acids were encoded by current F. elongatus isolate mt genome, TTT (Phe) (9.84%) and TTG (Leu) (7.73%) codon were the most frequent amino acids, whereas the ACC (Thr) (0.06%), GCC (Ala) (0.09%), CTC (Leu) (0.09%), and AAC (Asn) (0.09%) codon were the least frequent ones. At the third codon position of F. elongatus mt protein genes, T (50.82%) was observed most frequently and C (5.85%) was the least one. The current results can contribute to epidemiology diagnosis, molecular identification, taxonomy, genetic, and drug development researches about this parasite species in cattle.


Zootaxa ◽  
2019 ◽  
Vol 4671 (4) ◽  
pp. 571-580 ◽  
Author(s):  
YUE SHEN ◽  
YU-ZHOU DU

The nearly complete mitochondrial genome (mitogenome) of Leuctra sp. (Plecoptera: Leuctridae) was sequenced. The 14,585-bp long mitogenome of L. sp. contained 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a control region (CR). The mitochondrial gene arrangement of L. sp. was identical with other stoneflies and the putative ancestral mitogenome of Drosophila yakuba Burla. Most PCGs used standard ATN start codons and TAN termination codons. Twenty-one of the 22 tRNAs in each mitogenome exhibited the cloverleaf secondary structures, while the dihydrouridine (DHU) arm of trnSer (AGN) was reduced. Phylogenetic analyses using our new Leuctra sp. genome and all other publicly available genomes for Plecoptera and Bayesian inference (BI) and maximum likelihood methods (ML) generated identical topologies, both supporting the monophyly of all stonefly families for which tests were possible and the infraorder Systellognatha. Scopuridae and Gripopterygidae were grouped with the infraorder Euholognatha. The final relationships within Plecoptera were recovered as (((((Perlodidae + Chloroperlidae) + Perlidae) + Pteronarcyidae) + Peltoperlidae) + Styloperlidae) + (((((Capniidae + Taeniopterygidae) + Nemouridae) + Scopuridae) + Leuctridae) + Gripopterygidae). 


ZooKeys ◽  
2020 ◽  
Vol 945 ◽  
pp. 1-16
Author(s):  
Yuan-An Wu ◽  
Jin-Wei Gao ◽  
Xiao-Fei Cheng ◽  
Min Xie ◽  
Xi-Ping Yuan ◽  
...  

Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (–0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6131 ◽  
Author(s):  
Shiyu Du ◽  
Gengyun Niu ◽  
Tommi Nyman ◽  
Meicai Wei

We describeArge bellaWei & Du sp. nov., a large and beautiful species of Argidae from south China, and report its mitochondrial genome based on high-throughput sequencing data. We present the gene order, nucleotide composition of protein-coding genes (PCGs), and the secondary structures of RNA genes. The nearly complete mitochondrial genome ofA. bellahas a length of 15,576 bp and a typical set of 37 genes (22 tRNAs, 13 PCGs, and 2 rRNAs). Three tRNAs are rearranged in theA. bellamitochondrial genome as compared to the ancestral type in insects:trnMandtrnQare shuffled, whiletrnWis translocated from thetrnW-trnC-trnYcluster to a location downstream oftrnI. All PCGs are initiated by ATN codons, and terminated with TAA, TA or T as stop codons. All tRNAs have a typical cloverleaf secondary structure, except fortrnS1. H821 ofrrnSand H976 ofrrnLare redundant. A phylogenetic analysis based on mitochondrial genome sequences ofA. bella, 21 other symphytan species, two apocritan representatives, and four outgroup taxa supports the placement of Argidae as sister to the Pergidae within the symphytan superfamily Tenthredinoidea.


2020 ◽  
Vol 20 (5) ◽  
Author(s):  
Jungmo Lee ◽  
Jonghyun Park ◽  
Hong Xi ◽  
Jongsun Park

Abstract Figulus binodulus Waterhouse is a small stag beetle distributed in East Asia. We determined the first mitochondrial genome of F. binodulus of which is 16,261-bp long including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single large noncoding region of 1,717 bp. Gene order of F. binodulus is identical to the ancestral insect mitochondrial gene order as in most other stag beetle species. All of 22 tRNAs could be shaped into typical clover-leaf structure except trnSer1. Comparative analyses of 21 Lucanidae mitochondrial genomes was conducted in aspect of their length and AT-GC ratio. Nucleotide diversities analyses provide that cox1 and cox2 in Lucanidae are less diverse than those of Scarabaeoidea. Fifty simple sequence repeats (SSRs) were identified on F. binodulus mitochondrial genome. Comparative analysis of SSRs among five mitochondrial genomes displayed similar trend along with SSR types. Figulus binodulus was sister to all other available family Lucanidae species in the phylogenetic tree.


ZooKeys ◽  
2018 ◽  
Vol 783 ◽  
pp. 97-112 ◽  
Author(s):  
Bing-Wen Xi ◽  
Dong Zhang ◽  
Wen-Xiang Li ◽  
Bao-Juan Yang ◽  
Jun Xie

Parabreviscolexniepini is a recently described caryophyllidean monozoic tapeworm from schizothoracine fish on the Tibetan Plateau. In the present study, the complete mitochondrial genome of P.niepini is determined for the first time. The mitogenome is 15,034 bp in length with an A+T content of 59.6%, and consists of 12 protein-encoding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. The secondary structure of tRNAs exhibit the conventional cloverleaf structure, except for trnS1(AGN) and trnR, which lack DHU arms. The anti-codon of trnS1(AGN) in the mitogenome of P.niepini is TCT. The two major non-coding regions, 567 bp and 1428 bp in size, are located between trnL2 and cox2, trnG and cox3, respectively. The gene order of P.niepini shows a consistent pattern with other caryophyllideans. Phylogenetic analysis based on mitogenomic data indicates that P.niepini has a close evolutionary relationship with tapeworms Breviscolexorientalis and Atractolytocestushuronensis.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aifeire Abuduaini ◽  
Yuan-Bing Wang ◽  
Hui-Ying Zhou ◽  
Rui-Ping Kang ◽  
Ming-Liang Ding ◽  
...  

AbstractIn this study, the complete mitochondrial genome of O. gracilis was sequenced and assembled before being compared with related species. As the second largest mitogenome reported in the family Ophiocordycipitaceae, the mitogenome of O. gracilis (voucher OG201301) is a circular DNA molecule of 134,288 bp that contains numerous introns and longer intergenomic regions. UCA was detected as anticodon in tRNA-Sec of O. gracilis, while comparative mitogenome analysis of nine Ophiocordycipitaceae fungi indicated that the order and contents of PCGs and rRNA genes were considerably conserved and could descend from a common ancestor in Ophiocordycipitaceae. In addition, the expansion of mitochondrial organization, introns, gene length, and order of O. gracilis were determined to be similar to those of O. sinensis, which indicated common mechanisms underlying adaptive evolution in O. gracilis and O. sinensis. Based on the mitochondrial gene dataset (15 PCGs and 2 RNA genes), a close genetic relationship between O. gracilis and O. sinensis was revealed through phylogenetic analysis. This study is the first to investigate the molecular evolution, phylogenetic pattern, and genetic structure characteristics of mitogenome in O. gracilis. Based on the obtained results, the mitogenome of O. gracilis can increase understanding of the genetic diversity and evolution of cordycipitoid fungi.


Sign in / Sign up

Export Citation Format

Share Document