Progressive Loss of Lymphatic Vessels in Skin of Patients with Systemic Sclerosis

2010 ◽  
Vol 38 (2) ◽  
pp. 297-301 ◽  
Author(s):  
MIRKO MANETTI ◽  
ANNA FRANCA MILIA ◽  
SERENA GUIDUCCI ◽  
ELOISA ROMANO ◽  
MARCO MATUCCI-CERINIC ◽  
...  

Objective.Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular and fibrotic changes in the skin and internal organs. The role of blood vessel dysfunction in the pathogenesis of SSc has been extensively investigated, but few studies have addressed the involvement of the lymphatic vascular system. Our aim was to evaluate dermal lymphatic vessels in patients with SSc according to different phases of skin involvement.Methods.Skin biopsies were obtained from the forearm of 25 SSc patients (10 early/15 late-stage disease) and 13 healthy controls. Skin sections were immunostained for podoplanin (D2-40), which is selectively expressed in lymphatic endothelial cells, and examined by confocal laser scanning microscopy. Lymphatic vessels were counted in the papillary and reticular dermis. Data were analyzed using Student’s t test.Results.The number of lymphatic vessels was significantly reduced in the papillary and reticular dermis of SSc patients compared with controls. In early SSc, lymphatic vessel counts were not different from controls in the papillary dermis, and showed a trend toward a reduction in the reticular dermis. In late SSc, a significant reduction in lymphatic vessels compared with controls was found in both the papillary and reticular dermis. The number of lymphatic vessels in the papillary dermis of late SSc was significantly lower than in early SSc.Conclusion.In SSc, lymphatic microangiopathy is linked to the progression of skin involvement. The progressive disappearance of lymphatic vessels may have a critical pathogenetic role in the progression of SSc from an early edematous phase to overt fibrosis.

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 668
Author(s):  
Marco Scortichini ◽  
Stefania Loreti ◽  
Nicoletta Pucci ◽  
Valeria Scala ◽  
Giuseppe Tatulli ◽  
...  

Xylella fastidiosa subsp. pauca is the causal agent of “olive quick decline syndrome” in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex—Dentamet®—reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento.


2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Kirsten Sauermann ◽  
Thilo Gambichler ◽  
Sören Jaspers ◽  
Michael Radenhausen ◽  
Solveig Rapp ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2173
Author(s):  
Julian Gehmeyr ◽  
Abdelouahid Maghnouj ◽  
Jonas Tjaden ◽  
Matthias Vorgerd ◽  
Stephan Hahn ◽  
...  

The vascular endothelial growth factor (VEGF) is well known for its wide-ranging functions, not only in the vascular system, but also in the central (CNS) and peripheral nervous system (PNS). To study the role of VEGF in neuronal protection, growth and maturation processes have recently attracted much interest. These effects are mainly mediated by VEGF receptor 2 (VEGFR-2). Current studies have shown the age-dependent expression of VEGFR-2 in Purkinje cells (PC), promoting dendritogenesis in neonatal, but not in mature stages. We hypothesize that microRNAs (miRNA/miR) might be involved in the regulation of VEGFR-2 expression during the development of PC. In preliminary studies, we performed a miRNA profiling and identified miR204-5p as a potential regulator of VEGFR-2 expression. In the recent study, organotypic slice cultures of rat cerebella (postnatal day (p) 1 and 9) were cultivated and VEGFR-2 expression in PC was verified via immunohistochemistry. Additionally, PC at age p9 and p30 were isolated from cryosections by laser microdissection (LMD) to analyse VEGFR-2 expression by quantitative RT-PCR. To investigate the influence of miR204-5p on VEGFR-2 levels in PC, synthetic constructs including short hairpin (sh)-miR204-5p cassettes (miRNA-mimics), were microinjected into PC. The effects were analysed by confocal laser scanning microscopy (CLSM) and morphometric analysis. For the first time, we could show that miR204-5p has a negative effect on VEGF sensitivity in juvenile PC, resulting in a significant decrease of dendritic growth compared to untreated juvenile PC. In mature PC, the overexpression of miR204-5p leads to a shrinkage of dendrites despite VEGF treatment. The results of this study illustrate, for the first time, which miR204-5p expression has the potential to play a key role in cerebellar development by inhibiting VEGFR-2 expression in PC.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (10) ◽  
pp. 7-15
Author(s):  
HANNA KOIVULA ◽  
DOUGLAS BOUSFIELD ◽  
MARTTI TOIVAKKA

In the offset printing process, ink film splitting has an important impact on formation of ink filaments. The filament size and its distribution influence the leveling of ink and hence affect ink setting and the print quality. However, ink filaments are difficult to image due to their short lifetime and fine length scale. Due to this difficulty, limited work has been reported on the parameters that influence filament size and methods to characterize it. We imaged ink filament remains and quantified some of their characteristics by changing printing speed, ink amount, and fountain solution type. Printed samples were prepared using a laboratory printability tester with varying ink levels and operating settings. Rhodamine B dye was incorporated into fountain solutions to aid in the detection of the filaments. The prints were then imaged with a confocal laser scanning microscope (CLSM) and images were further analyzed for their surface topography. Modeling of the pressure pulses in the printing nip was included to better understand the mechanism of filament formation and the origin of filament length scale. Printing speed and ink amount changed the size distribution of the observed filament remains. There was no significant difference between fountain solutions with or without isopropyl alcohol on the observed patterns of the filament remains.


2012 ◽  
Vol 11 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Szabolcs Szilveszter ◽  
Botond Raduly ◽  
Szilard Bucs ◽  
Beata Abraham ◽  
Szabolcs Lanyi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document