EFFECT OF CeF3 ON NON-METALLIC INCLUSIONS AND IMPACT TOUGHNESS OF SELF-SHIELDEDLUX CORED WELD

2005 ◽  
Vol 41 (01) ◽  
pp. 221
Author(s):  
Ping Yu
2014 ◽  
Vol 2014 (12) ◽  
pp. 2-7 ◽  
Author(s):  
S.I. Kuchuk-yatsenko ◽  
◽  
Yu.V. Shvets ◽  
V.I. Shvets ◽  
◽  
...  

Author(s):  
R.A. Bogdanov

Effect of modifiers on the basis of rare-earth and alkali-earth metals on microstructure and impact toughness of car castings made of low-alloy casting 20GL steel of open-hearth and electroarc melts on the basis of statistical and microstructural analysis is considered. The relationship between the steel impact toughness level, matrix grain parameters and non-metallic inclusions is studied.


1956 ◽  
Vol 42 (10) ◽  
pp. 962-968
Author(s):  
Yosaku Koike ◽  
Sahei Noda
Keyword(s):  

2018 ◽  
Vol 84 (12) ◽  
pp. 5-19
Author(s):  
D. N. Bock ◽  
V. A. Labusov

A review of publications regarding detection of non-metallic inclusions in metal alloys using optical emission spectrometry with single-spark spectrum registration is presented. The main advantage of the method - an extremely short time of measurement (~1 min) – makes it useful for the purposes of direct production control. A spark-induced impact on a non-metallic inclusion results in a sharp increase (flashes) in the intensities of spectral lines of the elements that comprise the inclusion because their content in the metal matrix is usually rather small. The intensity distribution of the spectral line of the element obtained from several thousand of single-spark spectra consists of two parts: i) the Gaussian function corresponding to the content of the element in a dissolved form, and ii) an asymmetric additive in the region of high intensity values ??attributed to inclusions. Their quantitative determination is based on the assumption that the intensity of the spectral line in the single-spark spectrum is proportional to the content of the element in the matter ablated by the spark. Thus, according to the calibration dependence constructed using samples with a certified total element content, it is possible not only to determine the proportions of the dissolved and undissolved element, but also the dimensions of the individual inclusions. However, determination of the sizes is limited to a range of 1 – 20 µm. Moreover, only Al-containing inclusions can be determined quantitatively nowadays. Difficulties occur both with elements hardly dissolved in steels (O, Ca, Mg, S), and with the elements which exhibit rather high content in the dissolved form (Si, Mn). It is also still impossible to determine carbides and nitrides in steels using C and N lines. The use of time-resolved spectrometry can reduce the detection limits for inclusions containing Si and, possibly, Mn. The use of the internal standard in determination of the inclusions can also lower the detection limits, but may distort the results. Substitution of photomultipliers by solid-state linear radiation detectors provided development of more reliable internal standard, based on the background value in the vicinity of the spectral line. Verification of the results is difficult in the lack of standard samples of composition of the inclusions. Future studies can expand the range of inclusions to be determined by this method.


Author(s):  
Vitaly М. Goritsky ◽  
◽  
Georgy R. Shneyderov ◽  
Eugeny P. Studenov ◽  
Olga A. Zadubrovskaya ◽  
...  

Determination of causes of crack-like defects in the heavy plate steel 09Г2С is a crucial task, the solution of which is aimed at improving the mechanical safety of oil storage steel vertical tanks. In order to determine the causes for the formation of a group of crack-like defects oriented towards rolling, revealed during grinding and magnetic inspection of the tank wall surface near the vertical weld, the analysis of the chemical composition and testing of the mechanical properties of heavy plate steel were carried out, including the determination of the anisotropy of impact toughness in the temperature range from +20 to –75 °С, analysis of metal microstructure in the area of defect formation on transversal sections and rolled surface. Impact bending tests of 09Г2С heavy plate steel after controlled rolling in longitudinal and transverse directions showed no anisotropy of impact toughness, as well as high purity of steel as for sulfur and titanium, which at higher content causes impact toughness anisotropy. The revealed features of metal microstructure near the defects made it possible to conclude that the crack-like defects were formed during the rolling of gas bubbles at the stage of preparing semi-finished rolled products for finishing rolling. One of the possible methods to prevent such defects from getting into finished rolled products is the use of automated systems of visual inspection of rolled products in the manufacturing process.


The main methods (pressing and winding) of the processing of hybrid polymer composites to obtain items were examined. Advantages and disadvantages of the methods were noted. Good combinations of different-module fibers (carbon, glass, boron, organic) in hybrid polymer materials are described, which allow one to prepare materials with high compression strength on the one hand, and to increase fracture energy of samples and impact toughness on the other hand.


Sign in / Sign up

Export Citation Format

Share Document