Effect of modification on impact strength of critical carriage castings made of 20GL steel

Author(s):  
R.A. Bogdanov

Effect of modifiers on the basis of rare-earth and alkali-earth metals on microstructure and impact toughness of car castings made of low-alloy casting 20GL steel of open-hearth and electroarc melts on the basis of statistical and microstructural analysis is considered. The relationship between the steel impact toughness level, matrix grain parameters and non-metallic inclusions is studied.

2012 ◽  
Vol 12 (4) ◽  
pp. 85-94
Author(s):  
J. Kasińska ◽  
M. Gajewski

Abstract This paper presents influence of rare earth metals (REM) on the properties of GP240GH cast carbon steel. The research has been performed on successive industrial melts. Each time ca 2000 kg of liquid metal was modified. The rare earth metals were put into the ladle during tapping of heat melt from the furnace. Because of this the amount of sulphur in the cast steel was decreased and the non-metallic inclusion morphology was significantly changed. It was found that non metallic inclusions the cracking mechanism of Charpy specimens and the impact strength were all changed. The following properties were tested: mechanical properties (σy, σUTS), plastic properties (necking, elongation) and impact strength (SCI). In the three-point bend test the KJC stress intensity factor was evaluated.


2020 ◽  
Vol 70 (12) ◽  
pp. 4519-4524

The efficiency of time-temperature treatment (T-TT) on metal melts can be microstructurally analysed through their degree of purity in non-metallic inclusions. In the case of the Ni-based super alloy under discussion (MSRR 7045) the heat treatment was the undercooling consequences both on the durability of the casting environment (ingots-refractories) and on the internal structure of the metal (porosity, microstructural isotropy). Keywords: time-temperature treatment, undercooled melt, non-metallic inclusions, purity, microstructural isotropy


2008 ◽  
Vol 51 ◽  
pp. 85-92 ◽  
Author(s):  
Juan He ◽  
Jian Min Zeng ◽  
Along Yan

In this investigation, experiments were carried out to study the relationship of solidification parameters and the secondary dendrite arm spacing (SDAS) in A357 alloy casting with various thicknesses under the same solidification condition. The results show that the cooling rate decreases as the thickness of specimens increases, the local solidification time increased, and SDAS increased. The relationships between the SDAS and cooling rate and local solidification time under the condition of furan resin self-hardening sand casting were obtained: SDAS = 20.8 tf 0.3, SDAS = 69.34 v -0.3. The mechanical properties have some linear relations with SDAS of A357 alloy after aging heat treatment. The correlations can be expressed: UTS=410.4-0.8SDAS and El%=7.9-0.05SDAS.


2012 ◽  
Vol 12 (2) ◽  
pp. 129-134 ◽  
Author(s):  
M. Opiela ◽  
A. Grajcar

Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo-mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%), phosphorus (from 0.006 to 0.008%) and oxygen (6 ppm). The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17 μm2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non-metallic inclusions during hot-working.


2000 ◽  
Vol 40 (12) ◽  
pp. 1275-1282 ◽  
Author(s):  
Jie Lan ◽  
Junjie He ◽  
Wenjiang Ding ◽  
Qudong Wang ◽  
Yanping Zhu

2012 ◽  
Vol 736 ◽  
pp. 307-315 ◽  
Author(s):  
Murugavel Suresh ◽  
Satyam Suwas

Mg alloys show limited room temperature formability compared to its lightweight counterpart aluminium alloys, which is a main obstacle in using this metal for most of the structural applications. However, it is known that grain refinement and texture control are the two possibilities for the improvement of formability of magnesium alloys. Amongst the approaches attempted for the texture weakening, additions through of rare-earth (RE) elements have been found most effective. The relationship between the texture and ductility is well established. In this paper, the effect of rare earth addition on texture weakening has been summarized for various magnesium alloys under the two most common modes of deformation methods.


2019 ◽  
Vol 38 (2019) ◽  
pp. 362-369 ◽  
Author(s):  
Ming-ming Song ◽  
Yu-min Xie ◽  
Bo Song ◽  
Zheng-liang Xue ◽  
Nan Nie ◽  
...  

AbstractThe microstructures and impact properties of the heat affected zone (HAZ) in steel treated by rare earth (RE) under different welding processes were discussed. The effect of Al on the impact properties of the HAZ in RE treated steel was analyzed. It finds that when the welding t8/5 is smaller than 111 s, the main microstructure in steels is bainite/widmanstatten. The impact toughness of the HAZ is lower than that of the steel matrix. When t8/5 is more than 250 s, the microstructure is mainly acicular ferrite (AF) in the steel treated by RE, and the impact toughness of HAZ is obviously improved. Even under the welding processing with t8/5 about 600 s in RE treated steel can still obtain a lot of AF. While in the steel killed by Al and treated by RE, the main microstructure is parallel cluster of bainite/widmanstatten, and the impact toughness of HAZ is significantly lower than that of low-Al RE treated steel. Al can deteriorate the optimizing of RE treatment on HAZ.


2020 ◽  
Vol 844 ◽  
pp. 9-23
Author(s):  
Sergii Gerasin ◽  
Dorota Kalisz ◽  
Jerzy Iwanciw

The current work deals the phenomenon of non-metallic inclusions as a result of the addition of Yttrium as an alloying component. The order of introducing individual components determines its final content in steel. This problem was analyzed using the WYK_Stal program developed at AGH-UST. Individual cases were considered using the accepted thermodynamics models based on Wagner’s formalism. The study of Y2O3 and Y2S3 phase precipitation and the relationship between the addition of Y, Al, Ca, O and S in molten steel was studied using the thermodynamic models. Based on the simulation, the authors stated that, the introduction of aluminum as the final deoxidizer into the liquid steel before the yttrium, results in the formation of non-metallic oxide inclusions. The low oxygen content in the metal bath promotes the formation of yttrium sulphide. In the case of calcium dosing, it is reasonable that, the yttrium is introduced after this element, which limits the losses on the formation of the yttrium sulphide phase.


Sign in / Sign up

Export Citation Format

Share Document