Fuzzy C-means Using Manifold Learning and Its Application to Rolling Bearing Performance Degradation Assessment

2016 ◽  
Vol 52 (15) ◽  
pp. 59
Author(s):  
Fengtao WANG
2020 ◽  
pp. 107754632095495
Author(s):  
Bing Wang ◽  
Xiong Hu ◽  
Tao X Mei ◽  
Sun D Jian ◽  
Wang Wei

In allusion to the issue of rolling bearing degradation feature extraction and degradation condition clustering, a logistic chaotic map is introduced to analyze the advantages of C0 complexity and a technique based on a multidimensional degradation feature and Gath–Geva fuzzy clustering algorithmic is proposed. The multidimensional degradation feature includes C0 complexity, root mean square, and curved time parameter which is more in line with the performance degradation process. Gath–Geva fuzzy clustering is introduced to divide different conditions during the degradation process. A rolling bearing lifetime vibration signal from intelligent maintenance system bearing test center was introduced for instance analysis. The results show that C0 complexity is able to describe the degradation process and has advantages in sensitivity and calculation speed. The introduced degradation indicator curved time parameter can reflect the agglomeration character of the degradation condition at time dimension, which is more in line with the performance degradation pattern of mechanical equipment. The Gath–Geva fuzzy clustering algorithmic is able to cluster degradation condition of mechanical equipment such as bearings accurately.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1147-1154
Author(s):  
Bing Wang ◽  
Wang Wei ◽  
Xiong Hu ◽  
Dejian Sun

In allusion to the issue of degradation feature extraction and degradation phase division, a logistic chaotic map is used to study the variation pattern of spectral entropy, and a technique based on Gath–Geva fuzzy clustering is proposed. The degradation features include spectral entropy, root mean square, and “curved time,” which are more in line with the performance degradation process than degradation time. Gath–Geva fuzzy clustering is introduced to divide different phases in the degradation process. The rolling bearing lifetime vibration signal from the intelligent maintenance systems (IMS) bearing test center was introduced for instance analysis. The results show that spectral entropy is able to effectively describe the complexity variation pattern in the performance degradation process and has some advantages in sensitivity and calculation speed. The introduced “curved time” is able to reflect the agglomeration character of the degradation condition on a time scale, which is more in line with the performance degradation pattern of mechanical equipment. Gath–Geva fuzzy clustering is able to divide the degradation phase of mechanical equipment such as bearings accurately.


Sign in / Sign up

Export Citation Format

Share Document