The Time-varying Mesh Stiffness Calculation for Gear Tooth Crack based on Analytical-finite Element Method

2018 ◽  
Vol 54 (23) ◽  
pp. 56
Author(s):  
Jiateng WU
2012 ◽  
Vol 538-541 ◽  
pp. 2631-2635
Author(s):  
Xin Tan ◽  
Yao Li ◽  
Jun Jie Yang

This paper introduces a complex multi-body dynamics model which is established to simulate the dynamic behaviors of a multi-stage hybrid planetary gearing based on the finite element method and the software ADAMS. The finite element method is used to introduce deformable ring-gears and sun-gears by using 3D brick units. A whole multi-body dynamics model is established in the software ADAMS. Mesh stiffness variation excitation and gear tooth contact loss are intrinsically considered. A rich spectrum of dynamic phenomena is shown in the multi-stage hybrid planetary gearing. The results show that the static strength of main parts of the gearing is strong enough and the main vibration and noises are excited by the dynamic mesh forces acting on the tooth of planet-gears and ring-gears.


1993 ◽  
Vol 115 (4) ◽  
pp. 1008-1012 ◽  
Author(s):  
I. Moriwaki ◽  
T. Fukuda ◽  
Y. Watabe ◽  
K. Saito

The present study is concerned with an application of the global local finite element method (GLFEM) to a gear tooth stress analysis. The GLFEM is a numerical analysis technique which combines finite element solutions and classical analytical ones on the basis of the energy principle. In this method, the classical analytical solutions give an almost exact stress field to the elements in which the stress varies very rapidly and/or the stress concentration is found. A fine subdivision, therefore, is not required. In the application of the conventional finite element method to the gear tooth stress analysis, the fine subdivision is required especially at the positions near tooth bottom and the load applied point. Hence, only two-dimensional analysis is available for common use. Furthermore, in order to determine an exact location of a critical section on which a fillet stress is maximum, we must use complicated procedures, e.g., an iteration of subdivision for searching the maximum nodal stress. In the present paper, the GLFEM is applied to the gear tooth stress analysis to show that even the rough subdivision enables us to make the precise three-dimensional analysis. It also guarantees an easy determination of the critical section. Thus, we show the effective future of the GLFEM to the gear tooth stress analysis.


Author(s):  
Zhifeng Liu ◽  
Tao Zhang ◽  
Yongsheng Zhao ◽  
Shuxin Bi

The nonuniform cantilever beam and Hertzian contact model have been widely used to derive the mesh stiffness of spur gear assuming that the contact surface is absolutely frictionless. However, studies have confirmed that machined surfaces are rough in microscale and can be simulated by the Weierstrass–Mandelbort function. In order to get a reasonable and precise mesh stiffness model, the M-B contact model and finite element method are combined to express the local contact stiffness Kh. Through the simulation and comparison, the analytical finite element method is proved to be consistent with the traditional models and introduces the roughness parameters of machined tooth surface into the meshing process. Furthermore, the results also show that it is advantageous to improve the total mesh stiffness by increasing the fractal dimension D and input torque T as well as decreasing the roughness parameter G. In this paper, a relationship is built between the total mesh stiffness of gear sets with tooth surface characters and input torque, which can be a guidance in the design of the tooth surface parameters and the choice of the processing method in the future.


Author(s):  
I. Moriwaki ◽  
T. Fukuda ◽  
Y. Watabe ◽  
K. Saito

Abstract The present study is concerned with an application of the Global Local Finite Element Method (GLFEM) to a gear tooth stress analysis. The GLFEM is a numerical analysis technique which combines finite element solutions and classical analytical ones on the basis of the energy principle. In this method, the classical analytical solutions give an almost exact stress field to the elements in which the stress varies very rapidly and/or the stress concentration is found. A fine subdivision, therefore, is not required. In the application of the conventional finite element method to the gear tooth stress analysis, the fine subdivision is required especially at the positions near tooth bottom and the load applied point. Hence, only two dimensional analysis is available for common use. Furthermore, in order to determine an exact location of a critical section on which a fillet stress is maximum, we must use complicated procedures, e.g. an iteration of subdivision for searching the maximum nodal stress. In the present paper, the GLFEM is applied to the gear tooth stress analysis to show that even the rough subdivision enables us to make the precise three dimensional analysis. It also guarantees an easy determination of the critical section. Thus, we show the effective future of the GLFEM to the gear tooth stress analysis.


2013 ◽  
Vol 284-287 ◽  
pp. 1012-1017
Author(s):  
Pei Yu Wang ◽  
Xuan Long Cai

Planetary gear trains produce several advantages, including high speed reduction, compactness, greater load sharing and higher torque to weight ratio, which are used widely in wind turbine, automobiles, robot and other applications. In some important transmission applications, the noise and vibration are key concerns in design. In this paper, a 3D dynamic contact and impact analysis model of planetary gear trains has been proposed. Tooth surface friction, backlash, tolerance of peg hole, and time-varying stiffness were considered in this dynamic model. The ANSYS / LS-DYNA were utilized to analyze the dynamic responses of gear transmission of the planetary gears. The vibration behavior of an actual gear set under dynamic loading was simulated in the dynamic model. The stiffness and elastic deformation of gear teeth are calculated using the finite element method with actual geometry and positions of the gears. The time-varying position of the carrier defined as the vibration and noise source. After impact analysis, the numerical results of vibration of carrier involved with the transient and steady states. Through the Fast Fourier Transform (FFT) methods, frequency spectrums of the transient and steady states of the calculated vibration of planet carrier are obtained for the gearbox designer to avoid the resonance zone.


2012 ◽  
Vol 490-495 ◽  
pp. 2546-2549
Author(s):  
De Li Cui ◽  
Yi Tong Li ◽  
Hong Zhuang Zhang

The meshing generating spur bevel gear is presented by the method for precise modeling of gear in software Catia. Then by the excellent data exchange interface between Catia and ANSYS, the model can be transferred into ANSYS and bending stress of the gear tooth is calculated with finite element method ( FEM),which proposed design theory basis of generating spur bevel gear.


Sign in / Sign up

Export Citation Format

Share Document