scholarly journals Gravity Influence on Thermal Distortion of a Large Deployable Antenna

2021 ◽  
Vol 57 (3) ◽  
pp. 69
Keyword(s):  
2016 ◽  
Vol 24 (13) ◽  
pp. 14362 ◽  
Author(s):  
Seryeyohan Cho ◽  
Jihoon Jeong ◽  
Tae Jun Yu

1973 ◽  
Vol 9 (6) ◽  
pp. 717-717 ◽  
Author(s):  
R. Buser ◽  
R. Rohde ◽  
F. Gebhardt ◽  
D. Smith

1995 ◽  
Vol 117 (4) ◽  
pp. 622-628 ◽  
Author(s):  
Shingo Obara ◽  
Takahisa Kato

The worn surface profile of a composite structure was experimentally and numerically investigated focusing on the effects of sliding conditions. Wear tests on composites made of an oxide ceramic and an amorphous metal against a tetragonal zirconia polycrystals-alumina were carried out under various mean contact pressures, P, and sliding velocities, V. The test results showed that the worn surface profiles of the composites changed with the PV value. A new numerical method for simulating the worn surface profile of a composite structure has been developed. The present method is based upon the assumption that the profile of a worn surface is changed by thermal distortion of the sliding bodies due to frictional heating and by elastic deformation due to normal pressure and friction traction. The calculated results were compared with the test results, and the comparison showed that the elastic deformation plays an important role in forming the worn surface profile and that the effect of thermal distortion becomes remarkable with an increase in PV values. The numerical results clarified the contribution of the thermal distortion to the change in the worn surface profile of the composite.


2018 ◽  
Vol 22 ◽  
pp. 852-868 ◽  
Author(s):  
Hao Peng ◽  
Morteza Ghasri-Khouzani ◽  
Shan Gong ◽  
Ross Attardo ◽  
Pierre Ostiguy ◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. 453-464
Author(s):  
Lan Li ◽  
Tan Pan ◽  
Xinchang Zhang ◽  
Yitao Chen ◽  
Wenyuan Cui ◽  
...  

Purpose During the powder bed fusion process, thermal distortion is one big problem owing to the thermal stress caused by the high cooling rate and temperature gradient. For the purpose of avoiding distortion caused by internal residual stresses, support structures are used in most selective laser melting (SLM) process especially for cantilever beams because they can assist the heat dissipation. Support structures can also help to hold the work piece in its place and reduce volume of the printing materials. The mitigation of high thermal gradients during the manufacturing process helps to reduce thermal distortion and thus alleviate cracking, curling, delamination and shrinkage. Therefore, this paper aims to study the displacement and residual stress evolution of SLMed parts. Design/methodology/approach The objective of this study was to examine and compare the distortion and residual stress properties of two cantilever structures, using both numerical and experimental methods. The part-scale finite element analysis modeling technique was applied to numerically analyze the overhang distortions, using the layer-by-layer model for predicting a part scale model. The validation experiments of these two samples were built in a SLM platform. Then average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model. Findings The validation experiments results of average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model. It was found that they matched well with each other. From displacement and residual stress standpoint, by introducing two different support structure, two samples with the same cantilever beam can be successfully printed. In terms of reducing wasted support materials, print time and high surface quality, sample with less support will need less post-processing and waste energy. Originality/value Numerical modeling in this work can be a very useful tool to parametrically study the feasibility of support structures of SLM parts in terms of residual stresses and deformations. It has the capability for fast prediction in the SLMed parts.


Sign in / Sign up

Export Citation Format

Share Document