scholarly journals Kinematic Modeling and Analysis of the Tire Model with the Analytical Elastic Foundation for the Heavy-Loaded Radial Tire

2021 ◽  
Vol 57 (19) ◽  
pp. 102
Author(s):  
Shuofei Yang ◽  
Yangmin Li

Inspired by the existing closed-loop deployable mechanisms and parallel mechanisms, a new kind of mechanisms, named deployable parallel mechanisms, is introduced in this paper, and the kinematic analysis is presented. As the combination of deployable mechanisms and parallel mechanisms, deployable parallel mechanisms have advantages of both the two kinds of mechanisms. They can be easily constructed by origami and folded from spatial structures into paper slices. Due to the parallel structures, they can be designed to have higher stiffness and larger volume compressibility than the existing deployable mechanisms. Thus, deployable parallel mechanisms have tremendous potential to be applied in the design of spatial solar panels, elastic reconfigurable robotic modules, etc. With reference to the kinematic analysis of parallel mechanisms, a finite and instantaneous screw method for kinematics of deployable parallel mechanisms is proposed, which is a generic method that is suitable for displacement and velocity modeling and analysis of any deployable parallel mechanism. A typical mechanism with symmetrical structure is taken as an example to show the validity of the proposed method, and simulation and experiment are carried out to verify the obtained results of kinematics. This paper puts forth the basic concepts of deployable parallel mechanisms and lays a theoretical foundation for their kinematic modeling and analysis.


2010 ◽  
Vol 10 (01) ◽  
pp. 37-54 ◽  
Author(s):  
T. G. KOSTANTAKOPOULOS ◽  
G. T. MICHALTSOS

This paper deals with the problem of the dynamic behavior of a plate on elastic foundation under the action of forces produced by a landing airplane. A partially plastic impact is postulated for the contact between the airplane and the plate. The Winkler model is used to simulate the ground's elastic behavior, by which the foundation reaction is proportional to the plate deflection, along with dampers for energy dissipation. Two models are used for the airplane, i.e. a simplified mass-load model and a mass-dashpot-spring model, and their influences on the dynamic response of the plate are evaluated. Moreover, various parameters concerning the salient features of the airplane and its landing on the plate are studied with conclusions drawn. The efficiency of the methodology proposed herein was demonstrated in the numerical study.


2020 ◽  
Vol 5 (6) ◽  
pp. 646-650
Author(s):  
Awad Eisa G. Mohamed ◽  
Abuobeida Mohammed Elhassan

Low friction pneumatic cylinders are now being considered in applications for which only electric motors or hydraulics were previously considered suitable. One potential application of low friction pneumatics is robotic for metallurgical operations where the high power to weight ratio and low cost could be exploited. As part of an ongoing project to develop a pneumatic robot, this paper presents the kinematic analysis of pneumatic cylinder characteristics that simplifies controller design. Using mathematical modeling and simulation, non-linearity of modern pneumatic systems have been investigated. The derived models give an excellent representation of the system, despite the inclusion of a simplified friction model.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
A. S. Niyetkaliyev ◽  
E. Sariyildiz ◽  
G. Alici

Abstract The robotic shoulder rehabilitation exoskeletons that do not take into consideration all shoulder degrees-of-freedom (DOFs) lead to undesirable interaction forces and cause discomfort to the patient due to the joint axes misalignments between the exoskeleton and shoulder joints. In order to contribute to the solution of this human–robot compatibility issue, we present the kinematic modeling and analysis of a novel bio-inspired 5-DOFs hybrid human–robot mechanism (HRM). The human limbs are regarded as the inner passive restrained links in the proposed hybrid constrained anthropomorphic mechanism. The proposed hybrid mechanism combines serial and parallel manipulators with rigid and cable links enabling a match between human and exoskeleton joint axes. It is designed to cover the whole range of motion of the human shoulder with the workspace free of singularities. The numerical and simulation results from the computer-aided drawing model of the mechanism are presented to demonstrate the validity of the kinematic model, and the kinematic and singularity merits of the proposed mechanism. A three-dimensional printed prototype of the hybrid mechanism was fabricated to further validate the kinematic model and its overall advantages.


Author(s):  
Zhihao Liu ◽  
Qinhe Gao

Parametric analysis of in-plane vibration characteristic for unloaded heavily loaded radial tire is put forward and researched utilizing in-plane rigid-elastic coupled model. Coupled vibration characteristic between the flexible tread and circumferential sidewall is investigated with theoretical modeling and experimental modal method. In-plane analytical vibration feature is modeled with flexible beam on modified elastic foundation tire model. The rigid-elastic coupled tire model is derived with finite difference method and stiffness matrix and mass matrix are presented analytically with the geometrical and structural parameters. Structural parameters identification is implemented with genetic algorithm based on in-plane experimental modal parameter. The in-plane transfer functions with different structural parameters are compared and the parametric effect of structural parameters on in-plane transfer function is discussed. Experimental and theoretical result shows that the in-plane rigid-elastic coupled tire model can achieve the higher precision on predicting the transfer function and vibration feature of heavily loaded tire within the frequency band of 300 Hz.


Author(s):  
Carl A. Nelson ◽  
Raymond J. Cipra

The problem of self-reconfiguration planning for chain-type unit-modular robots is a complex one, with many issues yet to be successfully addressed. This paper describes an approach to several sub-problems associated with self-reconfiguration, namely kinematic modeling and analysis, including kinematic constraint satisfaction, and load analysis and redistribution. These issues are addressed in a unified framework whose primary objective is minimization of the time and mechanical energy expended during reconfiguration. Computer simulation efforts are described and results presented.


2011 ◽  
Vol 383-390 ◽  
pp. 6684-6688
Author(s):  
P.K. Parida ◽  
Bibhuti Bhusan Biswal ◽  
M. R. Khan

Precise and secure handling of flexible or irregularly shaped objects by robotic hands has become a challenge. Robot hands used in medical robotics and rehabilitation robotics need to be anthropomorphic to do the desired tasks. Although it is possible to develop robotic hands which can be very closely mapped to human hands, it is sometimes poses several problems due to control, manufacturing and economic reasons. The present work aims at designing and developing a robotic hand with five fingers for manipulation of objects. The kinematic modeling and its analysis, as a part of the development process is presented in this paper. The simulation results of the hand shows that the conceptualized design is yielding the desired result and works very efficiently.


Sign in / Sign up

Export Citation Format

Share Document