scholarly journals Association between a High-fat Low-carbohydrate Diet and Non-alcoholic Fatty Liver Disease: Truth or Myth?

2017 ◽  
Vol 92 (2) ◽  
pp. 112-117 ◽  
Author(s):  
Hyunwoo Oh ◽  
Jaehee Ahn ◽  
Dae Won Jun
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Kawamura ◽  
Hiroaki Tanaka ◽  
Ryota Tachibana ◽  
Kento Yoshikawa ◽  
Shintaro Maki ◽  
...  

AbstractWe aimed to investigate the effects of maternal tadalafil therapy on fetal programming of metabolic function in a mouse model of fetal growth restriction (FGR). Pregnant C57BL6 mice were divided into the control, L-NG-nitroarginine methyl ester (L-NAME), and tadalafil + L-NAME groups. Six weeks after birth, the male pups in each group were given a high-fat diet. A glucose tolerance test (GTT) was performed at 15 weeks and the pups were euthanized at 20 weeks. We then assessed the histological changes in the liver and adipose tissue, and the adipocytokine production. We found that the non-alcoholic fatty liver disease activity score was higher in the L-NAME group than in the control group (p < 0.05). Although the M1 macrophage numbers were significantly higher in the L-NAME/high-fat diet group (p < 0.001), maternal tadalafil administration prevented this change. Moreover, the epididymal adipocyte size was significantly larger in the L-NAME group than in the control group. This was also improved by maternal tadalafil administration (p < 0.05). Further, we found that resistin levels were significantly lower in the L-NAME group compared to the control group (p < 0.05). The combination of exposure to maternal L-NAME and a high-fat diet induced glucose impairment and non-alcoholic fatty liver disease. However, maternal tadalafil administration prevented these complications. Thus, deleterious fetal programming caused by FGR might be modified by in utero intervention with tadalafil.


2014 ◽  
Vol 10 (6) ◽  
pp. 2917-2923 ◽  
Author(s):  
XIANG WANG ◽  
QIAOHUA REN ◽  
TAO WU ◽  
YONG GUO ◽  
YONG LIANG ◽  
...  

2021 ◽  
Vol 65 ◽  
pp. 12-20
Author(s):  
Nilay D. Solanki ◽  
Kirti Vadi ◽  
Sandip Patel

Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the chronic liver diseases. Ficus racemosa has been used for many years in the Ayurvedic medicine system and is closely related with the management of metabolic conditions. The study investigated alleviating effects of methanolic extract of F. racemosa (FRM) bark on high-fat-high-fructose (HFHF) diet -induced NAFLD. Materials and Methods: HFHF-based model was developed for a period of 10 weeks. In treatment groups, FRM (100 mg/kg, 200 mg/kg, and 400 mg/kg) and atorvastatin (20 mg/kg) were administered for 6 weeks after initiating HFHF diet and continued for another 4 weeks. Liver functions test, lipid profile, serum leptin, and antioxidant parameters and histopathology were evaluated. Results: Elevated liver enzymes, lipid markers, and leptin were observed, with significant reduction in antioxidants in disease control rats. FRM treatment significantly improved serum aminotransferase activities, lipid profile, and oxidative changes and brought back to normal. Liver histopathology showed the fatty modifications induced by the HFHF diet, and reduction in fatty changes was observed due to FRM. Significant decline in serum leptin was observed with high-dose FRM. Conclusion: FRM showed positive effects in the reversal of NAFLD and different polyphenolic compounds in the plant were responsible for the proven action.


Author(s):  
Ana Lemus-Conejo ◽  
Elena Grao-Cruces ◽  
Rocio Toscano ◽  
Lourdes M Varela ◽  
Carmen Claro ◽  
...  

Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide which was isolated from lupine (Lupinus angustifolius L.) and showed anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or an HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in their drinking water at 0,5 mg/kg/d or 1 mg/kg/d. To determine the ability of GPETAFLR to improve the onset and progression of NAFLD, histological studies, hepatic enzyme profile, inflammatory cytokine and lipid metabolism-related genes and proteins were analyzed. Our results suggest that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption could repair HFD-induced hepatic damage, possibly via modifications in the liver&rsquo;s lipid signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document