66. Estimating processing tomato water consumption, leaf area index and height using Sentinel-2 and Venµs imagery

Author(s):  
G. Kaplan ◽  
L. Fine ◽  
V. Lukyanov ◽  
V.S. Manivasagam ◽  
N. Malachi ◽  
...  
2021 ◽  
Vol 13 (6) ◽  
pp. 1046
Author(s):  
Gregoriy Kaplan ◽  
Lior Fine ◽  
Victor Lukyanov ◽  
V. S. Manivasagam ◽  
Nitzan Malachy ◽  
...  

Crop monitoring throughout the growing season is key for optimized agricultural production. Satellite remote sensing is a useful tool for estimating crop variables, yet continuous high spatial resolution earth observations are often interrupted by clouds. This paper demonstrates overcoming this limitation by combining observations from two public-domain spaceborne optical sensors. Ground measurements were conducted in the Hula Valley, Israel, over four growing seasons to monitor the development of processing tomato. These measurements included continuous water consumption measurements using an eddy-covariance tower from which the crop coefficient (Kc) was calculated and measurements of Leaf Area Index (LAI) and crop height. Satellite imagery acquired by Sentinel-2 and VENµS was used to derive vegetation indices and model Kc, LAI, and crop height. The conjoint use of Sentinel-2 and VENµS imagery facilitated accurate estimation of Kc (R2 = 0.82, RMSE = 0.09), LAI (R2 = 0.79, RMSE = 1.2), and crop height (R2 = 0.81, RMSE = 7 cm). Additionally, our empirical models for LAI estimation were found to perform better than the SNAP biophysical processor (R2 = 0.53, RMSE = 2.3). Accordingly, Sentinel-2 and VENµS imagery was demonstrated to be a viable tool for agricultural monitoring.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 505
Author(s):  
Gregoriy Kaplan ◽  
Offer Rozenstein

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.


2018 ◽  
Vol 10 (5) ◽  
pp. 763 ◽  
Author(s):  
Manuel Campos-Taberner ◽  
Francisco García-Haro ◽  
Lorenzo Busetto ◽  
Luigi Ranghetti ◽  
Beatriz Martínez ◽  
...  

Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Maciej Bartold ◽  
Radoslaw Gurdak ◽  
Martyna Gatkowska ◽  
Wojciech Kiryla ◽  
...  

2019 ◽  
Vol 154 ◽  
pp. 189-201 ◽  
Author(s):  
Jie Wang ◽  
Xiangming Xiao ◽  
Rajen Bajgain ◽  
Patrick Starks ◽  
Jean Steiner ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 1843 ◽  
Author(s):  
Andrew Revill ◽  
Anna Florence ◽  
Alasdair MacArthur ◽  
Stephen Hoad ◽  
Robert Rees ◽  
...  

Leaf area index (LAI) estimates can inform decision-making in crop management. The European Space Agency’s Sentinel-2 satellite, with observations in the red-edge spectral region, can monitor crops globally at sub-field spatial resolutions (10–20 m). However, satellite LAI estimates require calibration with ground measurements. Calibration is challenged by spatial heterogeneity and scale mismatches between field and satellite measurements. Unmanned Aerial Vehicles (UAVs), generating high-resolution (cm-scale) LAI estimates, provide intermediary observations that we use here to characterise uncertainty and reduce spatial scaling discrepancies between Sentinel-2 observations and field surveys. We use a novel UAV multispectral sensor that matches Sentinel-2 spectral bands, flown in conjunction with LAI ground measurements. UAV and field surveys were conducted on multiple dates—coinciding with different wheat growth stages—that corresponded to Sentinel-2 overpasses. We compared chlorophyll red-edge index (CIred-edge) maps, derived from the Sentinel-2 and UAV platforms. We used Gaussian processes regression machine learning to calibrate a UAV model for LAI, based on ground data. Using the UAV LAI, we evaluated a two-stage calibration approach for generating robust LAI estimates from Sentinel-2. The agreement between Sentinel-2 and UAV CIred-edge values increased with growth stage—R2 ranged from 0.32 (stem elongation) to 0.75 (milk development). The CIred-edge variance between the two platforms was more comparable later in the growing season due to a more homogeneous and closed wheat canopy. The single-stage Sentinel-2 LAI calibration (i.e., direct calibration from ground measurements) performed poorly (mean R2 = 0.29, mean NRMSE = 17%) when compared to the two-stage calibration using the UAV data (mean R2 = 0.88, mean NRMSE = 8%). The two-stage approach reduced both errors and biases by >50%. By upscaling ground measurements and providing more representative model training samples, UAV observations provide an effective and viable means of enhancing Sentinel-2 wheat LAI retrievals. We anticipate that our UAV calibration approach to resolving spatial heterogeneity would enhance the retrieval accuracy of LAI and additional biophysical variables for other arable crop types and a broader range of vegetation cover types.


2020 ◽  
Vol 58 (2) ◽  
pp. 826-840 ◽  
Author(s):  
Yuanheng Sun ◽  
Qiming Qin ◽  
Huazhong Ren ◽  
Tianyuan Zhang ◽  
Shanshan Chen

Author(s):  
Richard Fernandes ◽  
Marie Weiss ◽  
Fernando Camacho ◽  
Beatrice Berthelot ◽  
Fred Baret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document